000141899 001__ 141899
000141899 005__ 20240303003551.0
000141899 0247_ $$2doi$$a10.1002/mp.13060
000141899 0247_ $$2pmid$$apmid:29938797
000141899 0247_ $$2ISSN$$a0094-2405
000141899 0247_ $$2ISSN$$a1522-8541
000141899 0247_ $$2ISSN$$a2473-4209
000141899 0247_ $$2altmetric$$aaltmetric:143140248
000141899 037__ $$aDKFZ-2018-02156
000141899 041__ $$aeng
000141899 082__ $$a610
000141899 1001_ $$0P:(DE-He78)d84cd9ecb4ecf463950852b88371f59c$$aHahn, Andreas$$b0$$eFirst author$$udkfz
000141899 245__ $$aTwo methods for reducing moving metal artifacts in cone-beam CT.
000141899 260__ $$aCollege Park, Md.$$bAAPM$$c2018
000141899 3367_ $$2DRIVER$$aarticle
000141899 3367_ $$2DataCite$$aOutput Types/Journal article
000141899 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544442993_27696
000141899 3367_ $$2BibTeX$$aARTICLE
000141899 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141899 3367_ $$00$$2EndNote$$aJournal Article
000141899 520__ $$aIn image-guided radiation therapy, fiducial markers or clips are often used to determine the position of the tumor. These markers lead to streak artifacts in cone-beam CT (CBCT) scans. Standard inpainting-based metal artifact reduction (MAR) methods fail to remove these artifacts in cases of large motion. We propose two methods to effectively reduce artifacts caused by moving metal inserts.The first method (MMAR) utilizes a coarse metal segmentation in the image domain and a refined segmentation in the rawdata domain. After an initial reconstruction, metal is segmented and forward projected giving a coarse metal mask in the rawdata domain. Inside the coarse mask, metal is segmented by utilizing a 2D Sobel filter. Metal is removed by linear interpolation in the refined metal mask. The second method (MoCoMAR) utilizes a motion compensation (MoCo) algorithm [Med Phys. 2013;40:101913] that provides us with a motion-free volume (3D) or with a time series of motion-free volumes (4D). We then apply the normalized metal artifact reduction (NMAR) [Med Phys. 2010;37:5482-5493] to these MoCo volumes. Both methods were applied to three CBCT data sets of patients with metal inserts in the thorax or abdomen region and a 4D thorax simulation. The results were compared to volumes corrected by a standard MAR1 [Radiology. 1987;164:576-577].MMAR and MoCoMAR were able to remove all artifacts caused by moving metal inserts for the patients and the simulation. Both new methods outperformed the standard MAR1, which was only able to remove artifacts caused by metal inserts with little or no motion.In this work, two new methods to remove artifacts caused by moving metal inserts are introduced. Both methods showed good results for a simulation and three patients. While the first method (MMAR) works without any prior knowledge, the second method (MoCoMAR) requires a respiratory signal for the MoCo step and is computationally more demanding and gives no benefit over MMAR, unless MoCo images are desired.
000141899 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000141899 588__ $$aDataset connected to CrossRef, PubMed,
000141899 7001_ $$0P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c$$aKnaup, Michael$$b1$$udkfz
000141899 7001_ $$aBrehm, Marcus$$b2
000141899 7001_ $$aSauppe, Sebastian$$b3
000141899 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelriess, Marc$$b4$$eLast author$$udkfz
000141899 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.13060$$gVol. 45, no. 8, p. 3671 - 3680$$n8$$p3671 - 3680$$tMedical physics$$v45$$x0094-2405$$y2018
000141899 909CO $$ooai:inrepo02.dkfz.de:141899$$pVDB
000141899 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d84cd9ecb4ecf463950852b88371f59c$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000141899 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000141899 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000141899 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000141899 9141_ $$y2018
000141899 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141899 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000141899 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2017
000141899 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141899 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000141899 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000141899 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141899 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141899 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141899 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141899 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000141899 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141899 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000141899 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000141899 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lRöntgenbildgebung und Computertomographie$$x1
000141899 980__ $$ajournal
000141899 980__ $$aVDB
000141899 980__ $$aI:(DE-He78)E020-20160331
000141899 980__ $$aI:(DE-He78)E025-20160331
000141899 980__ $$aUNRESTRICTED