000141988 001__ 141988
000141988 005__ 20240229105137.0
000141988 0247_ $$2doi$$a10.1148/radiol.2018173064
000141988 0247_ $$2pmid$$apmid:30063191
000141988 0247_ $$2ISSN$$a0033-8419
000141988 0247_ $$2ISSN$$a1527-1315
000141988 0247_ $$2altmetric$$aaltmetric:45862997
000141988 037__ $$aDKFZ-2018-02218
000141988 041__ $$aeng
000141988 082__ $$a610
000141988 1001_ $$0P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aBonekamp, David$$b0$$eFirst author
000141988 245__ $$aRadiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values.
000141988 260__ $$aOak Brook, Ill.$$bSoc.$$c2018
000141988 3367_ $$2DRIVER$$aarticle
000141988 3367_ $$2DataCite$$aOutput Types/Journal article
000141988 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683529322_26275
000141988 3367_ $$2BibTeX$$aARTICLE
000141988 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141988 3367_ $$00$$2EndNote$$aJournal Article
000141988 520__ $$aPurpose To compare biparametric contrast-free radiomic machine learning (RML), mean apparent diffusion coefficient (ADC), and radiologist assessment for characterization of prostate lesions detected during prospective MRI interpretation. Materials and Methods This single-institution study included 316 men (mean age ± standard deviation, 64.0 years ± 7.8) with an indication for MRI-transrectal US fusion biopsy between May 2015 and September 2016 (training cohort, 183 patients; test cohort, 133 patients). Lesions identified by prospective clinical readings were manually segmented for mean ADC and radiomics analysis. Global and zone-specific random forest RML and mean ADC models for classification of clinically significant prostate cancer (Gleason grade group ≥ 2) were developed on the training set and the fixed models tested on an independent test set. Clinical readings, mean ADC, and radiomics were compared by using the McNemar test and receiver operating characteristic (ROC) analysis. Results In the test set, radiologist interpretation had a per-lesion sensitivity of 88% (53 of 60) and specificity of 50% (79 of 159). Quantitative measurement of the mean ADC (cut-off 732 mm2/sec) significantly reduced false-positive (FP) lesions from 80 to 60 (specificity 62% [99 of 159]) and false-negative (FN) lesions from seven to six (sensitivity 90% [54 of 60]) (P = .048). Radiologist interpretation had a per-patient sensitivity of 89% (40 of 45) and specificity of 43% (38 of 88). Quantitative measurement of the mean ADC reduced the number of patients with FP lesions from 50 to 43 (specificity 51% [45 of 88]) and the number of patients with FN lesions from five to three (sensitivity 93% [42 of 45]) (P = .496). Comparison of the area under the ROC curve (AUC) for the mean ADC (AUCglobal = 0.84; AUCzone-specific ≤ 0.87) vs the RML (AUCglobal = 0.88, P = .176; AUCzone-specific ≤ 0.89, P ≥ .493) showed no significantly different performance. Conclusion Quantitative measurement of the mean apparent diffusion coefficient (ADC) improved differentiation of benign versus malignant prostate lesions, compared with clinical assessment. Radiomic machine learning had comparable but not better performance than mean ADC assessment. © RSNA, 2018 Online supplemental material is available for this article.
000141988 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000141988 588__ $$aDataset connected to CrossRef, PubMed,
000141988 7001_ $$0P:(DE-He78)a35f3fa04c359e037b2377f96920f93f$$aKohl, Simon$$b1$$eFirst author
000141988 7001_ $$0P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aWiesenfarth, Manuel$$b2
000141988 7001_ $$0P:(DE-HGF)0$$aSchelb, Patrick$$b3
000141988 7001_ $$0P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aRadtke, Jan Philipp$$b4
000141988 7001_ $$0P:(DE-He78)abd768f879e71d08068d48fabb7e96cf$$aGötz, Michael$$b5
000141988 7001_ $$0P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e$$aKickingereder, Philipp$$b6$$udkfz
000141988 7001_ $$0P:(DE-He78)5b864248a2d378013c80cd8fcacb0629$$aYaqubi, Kaneschka$$b7
000141988 7001_ $$aHitthaler, Bertram$$b8
000141988 7001_ $$0P:(DE-He78)51c486692a77d77ee40b3760dd3b390b$$aGählert, Nils$$b9
000141988 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b10
000141988 7001_ $$0P:(DE-He78)3afd7ad05414293928330064c4955805$$aDeister, Fenja$$b11
000141988 7001_ $$0P:(DE-He78)c420f6efccb409e1a287be027501a74c$$aFreitag, Martin$$b12
000141988 7001_ $$aHohenfellner, Markus$$b13
000141988 7001_ $$aHadaschik, Boris A$$b14
000141988 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b15
000141988 7001_ $$0P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aMaier-Hein, Klaus$$b16$$eLast author
000141988 773__ $$0PERI:(DE-600)2010588-5$$a10.1148/radiol.2018173064$$gVol. 289, no. 1, p. 128 - 137$$n1$$p128 - 137$$tRadiology$$v289$$x1527-1315$$y2018
000141988 909CO $$ooai:inrepo02.dkfz.de:141988$$pVDB
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a35f3fa04c359e037b2377f96920f93f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)abd768f879e71d08068d48fabb7e96cf$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5b864248a2d378013c80cd8fcacb0629$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)51c486692a77d77ee40b3760dd3b390b$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3afd7ad05414293928330064c4955805$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c420f6efccb409e1a287be027501a74c$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000141988 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000141988 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000141988 9141_ $$y2018
000141988 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141988 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141988 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141988 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000141988 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIOLOGY : 2017
000141988 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141988 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141988 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141988 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141988 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000141988 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141988 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000141988 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bRADIOLOGY : 2017
000141988 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000141988 9201_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x1
000141988 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x2
000141988 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x3
000141988 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x4
000141988 980__ $$ajournal
000141988 980__ $$aVDB
000141988 980__ $$aI:(DE-He78)E010-20160331
000141988 980__ $$aI:(DE-He78)E230-20160331
000141988 980__ $$aI:(DE-He78)E020-20160331
000141988 980__ $$aI:(DE-He78)C060-20160331
000141988 980__ $$aI:(DE-He78)L101-20160331
000141988 980__ $$aUNRESTRICTED