000141992 001__ 141992
000141992 005__ 20240229105137.0
000141992 0247_ $$2doi$$a10.1080/2162402X.2018.1526613
000141992 0247_ $$2pmid$$apmid:30524909
000141992 0247_ $$2pmc$$apmc:PMC6279340
000141992 0247_ $$2ISSN$$a2162-4011
000141992 0247_ $$2ISSN$$a2162-402X
000141992 037__ $$aDKFZ-2018-02222
000141992 041__ $$aeng
000141992 082__ $$a610
000141992 1001_ $$0P:(DE-HGF)0$$aBudczies, Jan$$b0$$eFirst author
000141992 245__ $$aIntegrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden.5
000141992 260__ $$aAbingdon$$bTaylor & Franics$$c2018
000141992 3367_ $$2DRIVER$$aarticle
000141992 3367_ $$2DataCite$$aOutput Types/Journal article
000141992 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549889176_2551
000141992 3367_ $$2BibTeX$$aARTICLE
000141992 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141992 3367_ $$00$$2EndNote$$aJournal Article
000141992 520__ $$aHarnessing the immune system by checkpoint blockade has greatly expanded the therapeutic options for advanced cancer. Since the efficacy of immunotherapies is influenced by the molecular make-up of the tumor and its crosstalk with the immune system, comprehensive analysis of genetic and immunologic tumor characteristics is essential to gain insight into mechanisms of therapy response and resistance. We investigated the association of immune cell contexture and tumor genetics including tumor mutational burden (TMB), copy number alteration (CNA) load, mutant allele heterogeneity (MATH) and specific mutational signatures (MutSigs) using TCGA data of 5722 tumor samples from 21 cancer types. Among all genetic variables, MutSigs associated with DNA repair deficiency and AID/APOBEC gene activity showed the strongest positive correlations with immune parameters. For smoking-related and UV-light-exposure associated MutSigs a few positive correlations were identified, while MutSig 1 (clock-like process) correlated non-significantly or negatively with the major immune parameters in most cancer types. High TMB was associated with high immune cell infiltrates in some but not all cancer types, in contrast, high CNA load and high MATH were mostly associated with low immune cell infiltrates. While a bi- or multimodal distribution of TMB was observed in colorectal, stomach and endometrial cancer where its levels were associated with POLE/POLD1 mutations and MSI status, TMB was unimodal distributed in the most other cancer types including NSCLC and melanoma. In summary, this study uncovered specific genetic-immunology associations in major cancer types and suggests that mutational signatures should be further investigated as interesting candidates for response prediction beyond TMB.
000141992 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000141992 588__ $$aDataset connected to CrossRef, PubMed,
000141992 7001_ $$aSeidel, Anja$$b1
000141992 7001_ $$aChristopoulos, Petros$$b2
000141992 7001_ $$aEndris, Volker$$b3
000141992 7001_ $$0P:(DE-HGF)0$$aKloor, Matthias$$b4
000141992 7001_ $$aGyőrffy, Balázs$$b5
000141992 7001_ $$aSeliger, Barbara$$b6
000141992 7001_ $$0P:(DE-HGF)0$$aSchirmacher, Peter$$b7
000141992 7001_ $$0P:(DE-HGF)0$$aStenzinger, Albrecht$$b8
000141992 7001_ $$0P:(DE-HGF)0$$aDenkert, Carsten$$b9$$eLast author
000141992 773__ $$0PERI:(DE-600)2645309-5$$a10.1080/2162402X.2018.1526613$$gVol. 7, no. 12, p. e1526613 -$$n12$$pe1526613 -$$tOncoImmunology$$v7$$x2162-402X$$y2018
000141992 909CO $$ooai:inrepo02.dkfz.de:141992$$pVDB
000141992 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bONCOIMMUNOLOGY : 2017
000141992 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141992 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141992 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141992 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000141992 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000141992 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000141992 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141992 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141992 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141992 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000141992 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bONCOIMMUNOLOGY : 2017
000141992 9141_ $$y2018
000141992 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000141992 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000141992 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000141992 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000141992 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000141992 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000141992 9201_ $$0I:(DE-He78)G105-20160331$$kG105$$lGentherapie von Tumoren$$x0
000141992 980__ $$ajournal
000141992 980__ $$aVDB
000141992 980__ $$aI:(DE-He78)G105-20160331
000141992 980__ $$aUNRESTRICTED