000142023 001__ 142023
000142023 005__ 20240229105139.0
000142023 0247_ $$2doi$$a10.1007/s11307-018-1196-9
000142023 0247_ $$2pmid$$apmid:29679299
000142023 0247_ $$2ISSN$$a1536-1632
000142023 0247_ $$2ISSN$$a1860-2002
000142023 0247_ $$2ISSN$$a=
000142023 0247_ $$2ISSN$$aMolecular
000142023 0247_ $$2ISSN$$aimaging
000142023 0247_ $$2ISSN$$aand
000142023 0247_ $$2ISSN$$abiology
000142023 0247_ $$2ISSN$$a(Internet)
000142023 037__ $$aDKFZ-2018-02253
000142023 041__ $$aeng
000142023 082__ $$a570
000142023 1001_ $$aFlechsig, Paul$$b0
000142023 245__ $$aImpact of Computer-Aided CT and PET Analysis on Non-invasive T Staging in Patients with Lung Cancer and Atelectasis.
000142023 260__ $$aAmsterdam [u.a.]$$bElsevier Science58693$$c2018
000142023 3367_ $$2DRIVER$$aarticle
000142023 3367_ $$2DataCite$$aOutput Types/Journal article
000142023 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549887387_598
000142023 3367_ $$2BibTeX$$aARTICLE
000142023 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142023 3367_ $$00$$2EndNote$$aJournal Article
000142023 520__ $$aTumor delineation within an atelectasis in lung cancer patients is not always accurate. When T staging is done by integrated 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG)-positron emission tomography (PET)/X-ray computer tomography (CT), tumors of neuroendocrine differentiation and slowly growing tumors can present with reduced FDG uptake, thus aggravating an exact T staging. In order to further exhaust information derived from [18F]FDG-PET/CT, we evaluated the impact of CT density and maximum standardized uptake value (SUVmax) for the classification of different tumor subtypes within a surrounding atelectasis, as well as possible cutoff values for the differentiation between the primary tumor and atelectatic lung tissue.Seventy-two patients with histologically proven lung cancer and adjacent atelectasis were investigated. Non-contrast-enhanced [18F]FDG-PET/CT was performed within 2 weeks before surgery/biopsy. Boundaries of the primary within the atelectasis were determined visually on the basis of [18F]FDG uptake; CT density was quantified manually within each primary and each atelectasis.CT density of the primary (36.4 Hounsfield units (HU) ± 6.2) was significantly higher compared to that of atelectatic lung (24.3 HU ± 8.3; p < 0.01), irrespective of the histological subtype. The discrimination between different malignant tumors using density analysis failed. SUVmax was increased in squamous cell carcinomas compared to adenocarcinomas. Irrespective of the malignant subtype, a possible cutoff value of 24 HU may help to exclude the presence of a primary in lesions below 24 HU, whereas a density above a threshold of 40 HU can help to exclude atelectatic lung.Density measurements in patients with lung cancer and surrounding atelectasis may help to delineate the primary tumor, irrespective of the specific lung cancer subtype. This could improve T staging and radiation treatment planning (RTP) without additional application of a contrast agent in CT, or an additional magnetic resonance imaging (MRI), even in cases of lung tumors of neuroendocrine differentiation or in slowly growing tumors with less avidity to [18F]FDG.
000142023 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000142023 588__ $$aDataset connected to CrossRef, PubMed,
000142023 7001_ $$aRastgoo, Ramin$$b1
000142023 7001_ $$aKratochwil, Clemens$$b2
000142023 7001_ $$aMartin, Ole$$b3
000142023 7001_ $$0P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aHolland-Letz, Tim$$b4$$udkfz
000142023 7001_ $$aHarms, Alexander$$b5
000142023 7001_ $$aKauczor, Hans-Ulrich$$b6
000142023 7001_ $$0P:(DE-He78)13a0afba029f5f64dc18b25ef7499558$$aHaberkorn, Uwe$$b7$$udkfz
000142023 7001_ $$0P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94$$aGiesel, Frederik$$b8$$eLast author$$udkfz
000142023 773__ $$0PERI:(DE-600)2079211-6$$a10.1007/s11307-018-1196-9$$gVol. 20, no. 6, p. 1044 - 1052$$n6$$p1044 - 1052$$tMolecular imaging & biology$$v20$$x1860-2002$$y2018
000142023 909CO $$ooai:inrepo02.dkfz.de:142023$$pVDB
000142023 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142023 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142023 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL IMAGING BIOL : 2017
000142023 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142023 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000142023 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000142023 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142023 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142023 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142023 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000142023 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000142023 9141_ $$y2018
000142023 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000142023 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)13a0afba029f5f64dc18b25ef7499558$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000142023 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000142023 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000142023 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000142023 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lKKE Nuklearmedizin$$x1
000142023 980__ $$ajournal
000142023 980__ $$aVDB
000142023 980__ $$aI:(DE-He78)C060-20160331
000142023 980__ $$aI:(DE-He78)E060-20160331
000142023 980__ $$aUNRESTRICTED