001     142023
005     20240229105139.0
024 7 _ |2 doi
|a 10.1007/s11307-018-1196-9
024 7 _ |2 pmid
|a pmid:29679299
024 7 _ |2 ISSN
|a 1536-1632
024 7 _ |2 ISSN
|a 1860-2002
024 7 _ |2 ISSN
|a =
024 7 _ |2 ISSN
|a Molecular
024 7 _ |2 ISSN
|a imaging
024 7 _ |2 ISSN
|a and
024 7 _ |2 ISSN
|a biology
024 7 _ |2 ISSN
|a (Internet)
037 _ _ |a DKFZ-2018-02253
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Flechsig, Paul
|b 0
245 _ _ |a Impact of Computer-Aided CT and PET Analysis on Non-invasive T Staging in Patients with Lung Cancer and Atelectasis.
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science58693
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1549887387_598
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Tumor delineation within an atelectasis in lung cancer patients is not always accurate. When T staging is done by integrated 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG)-positron emission tomography (PET)/X-ray computer tomography (CT), tumors of neuroendocrine differentiation and slowly growing tumors can present with reduced FDG uptake, thus aggravating an exact T staging. In order to further exhaust information derived from [18F]FDG-PET/CT, we evaluated the impact of CT density and maximum standardized uptake value (SUVmax) for the classification of different tumor subtypes within a surrounding atelectasis, as well as possible cutoff values for the differentiation between the primary tumor and atelectatic lung tissue.Seventy-two patients with histologically proven lung cancer and adjacent atelectasis were investigated. Non-contrast-enhanced [18F]FDG-PET/CT was performed within 2 weeks before surgery/biopsy. Boundaries of the primary within the atelectasis were determined visually on the basis of [18F]FDG uptake; CT density was quantified manually within each primary and each atelectasis.CT density of the primary (36.4 Hounsfield units (HU) ± 6.2) was significantly higher compared to that of atelectatic lung (24.3 HU ± 8.3; p < 0.01), irrespective of the histological subtype. The discrimination between different malignant tumors using density analysis failed. SUVmax was increased in squamous cell carcinomas compared to adenocarcinomas. Irrespective of the malignant subtype, a possible cutoff value of 24 HU may help to exclude the presence of a primary in lesions below 24 HU, whereas a density above a threshold of 40 HU can help to exclude atelectatic lung.Density measurements in patients with lung cancer and surrounding atelectasis may help to delineate the primary tumor, irrespective of the specific lung cancer subtype. This could improve T staging and radiation treatment planning (RTP) without additional application of a contrast agent in CT, or an additional magnetic resonance imaging (MRI), even in cases of lung tumors of neuroendocrine differentiation or in slowly growing tumors with less avidity to [18F]FDG.
536 _ _ |0 G:(DE-HGF)POF3-315
|a 315 - Imaging and radiooncology (POF3-315)
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Rastgoo, Ramin
|b 1
700 1 _ |a Kratochwil, Clemens
|b 2
700 1 _ |a Martin, Ole
|b 3
700 1 _ |0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|a Holland-Letz, Tim
|b 4
|u dkfz
700 1 _ |a Harms, Alexander
|b 5
700 1 _ |a Kauczor, Hans-Ulrich
|b 6
700 1 _ |0 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|a Haberkorn, Uwe
|b 7
|u dkfz
700 1 _ |0 P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94
|a Giesel, Frederik
|b 8
|e Last author
|u dkfz
773 _ _ |0 PERI:(DE-600)2079211-6
|a 10.1007/s11307-018-1196-9
|g Vol. 20, no. 6, p. 1044 - 1052
|n 6
|p 1044 - 1052
|t Molecular imaging & biology
|v 20
|x 1860-2002
|y 2018
909 C O |o oai:inrepo02.dkfz.de:142023
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|a Deutsches Krebsforschungszentrum
|b 4
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|a Deutsches Krebsforschungszentrum
|b 7
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94
|a Deutsches Krebsforschungszentrum
|b 8
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-315
|1 G:(DE-HGF)POF3-310
|2 G:(DE-HGF)POF3-300
|a DE-HGF
|l Krebsforschung
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b MOL IMAGING BIOL : 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1110
|2 StatID
|a DBCoverage
|b Current Contents - Clinical Medicine
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l KKE Nuklearmedizin
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21