TY - JOUR
AU - Li, Kuanrong
AU - Anderson, Garnet
AU - Viallon, Vivian
AU - Arveux, Patrick
AU - Kvaskoff, Marina
AU - Fournier, Agnès
AU - Krogh, Vittorio
AU - Tumino, Rosario
AU - Sánchez, Maria-Jose
AU - Ardanaz, Eva
AU - Chirlaque, María-Dolores
AU - Agudo, Antonio
AU - Muller, David C
AU - Smith, Todd
AU - Tzoulaki, Ioanna
AU - Key, Timothy J
AU - Bueno-de-Mesquita, Bas
AU - Trichopoulou, Antonia
AU - Bamia, Christina
AU - Orfanos, Philippos
AU - Kaaks, Rudolf
AU - Hüsing, Anika
AU - Turzanski-Fortner, Renée
AU - Zeleniuch-Jacquotte, Anne
AU - Sund, Malin
AU - Dahm, Christina C
AU - Overvad, Kim
AU - Aune, Dagfinn
AU - Weiderpass, Elisabete
AU - Romieu, Isabelle
AU - Riboli, Elio
AU - Gunter, Marc J
AU - Dossus, Laure
AU - Prentice, Ross
AU - Ferrari, Pietro
TI - Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts.
JO - Breast cancer research
VL - 20
IS - 1
SN - 1465-542X
CY - London
PB - BioMed Central
M1 - DKFZ-2018-02309
SP - 147
PY - 2018
AB - Few published breast cancer (BC) risk prediction models consider the heterogeneity of predictor variables between estrogen-receptor positive (ER+) and negative (ER-) tumors. Using data from two large cohorts, we examined whether modeling this heterogeneity could improve prediction.We built two models, for ER+ (ModelER+) and ER- tumors (ModelER-), respectively, in 281,330 women (51
LB - PUB:(DE-HGF)16
C6 - pmid:30509329
C2 - pmc:PMC6276150
DO - DOI:10.1186/s13058-018-1073-0
UR - https://inrepo02.dkfz.de/record/142079
ER -