001     142080
005     20240229105143.0
024 7 _ |a 10.3389/fgene.2018.00558
|2 doi
024 7 _ |a pmid:30559759
|2 pmid
024 7 _ |a pmc:PMC6286959
|2 pmc
024 7 _ |a altmetric:52117757
|2 altmetric
037 _ _ |a DKFZ-2018-02310
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Limonciel, Alice
|b 0
245 _ _ |a Persistence of Epigenomic Effects After Recovery From Repeated Treatment With Two Nephrocarcinogens.
260 _ _ |a Lausanne
|c 2018
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1549881185_1055
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The discovery of the epigenetic regulation of transcription has provided a new source of mechanistic understanding to long lasting effects of chemicals. However, this information is still seldom exploited in a toxicological context and studies of chemical effect after washout remain rare. Here we studied the effects of two nephrocarcinogens on the human proximal tubule cell line RPTEC/TERT1 using high-content mRNA microarrays coupled with miRNA, histone acetylation (HA) and DNA methylation (DM) arrays and metabolomics during a 5-day repeat-dose exposure and 3 days after washout. The mycotoxin ochratoxin A (OTA) was chosen as a model compound for its known impact on HA and DM. The foremost effect observed was the modulation of thousands of mRNAs and histones by OTA during and after exposure. In comparison, the oxidant potassium bromate (KBrO3) had a milder impact on gene expression and epigenetics. However, there was no strong correlation between epigenetic modifications and mRNA changes with OTA while with KBrO3 the gene expression data correlated better with HA for both up- and down-regulated genes. Even when focusing on the genes with persistent epigenetic modifications after washout, only half were coupled to matching changes in gene expression induced by OTA, suggesting that while OTA causes a major effect on the two epigenetic mechanisms studied, these alone cannot explain its impact on gene expression. Mechanistic analysis confirmed the known activation of Nrf2 and p53 by KBrO3, while OTA inhibited most of the same genes, and genes involved in the unfolded protein response. A few miRNAs could be linked to these effects of OTA, albeit without clear contribution of epigenetics to the modulation of the pathways at large. Metabolomics revealed disturbances in amino acid balance, energy catabolism, nucleotide metabolism and polyamine metabolism with both chemicals. In conclusion, the large impact of OTA on transcription was confirmed at the mRNA level but also with two high-content epigenomic methodologies. Transcriptomic data confirmed the previously reported activation (by KBrO3) and inhibition (by OTA) of protective pathways. However, the integration of omic datasets suggested that HA and DM were not driving forces in the gene expression changes induced by either chemical.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a van Breda, Simone G
|b 1
700 1 _ |a Jiang, Xiaoqi
|0 P:(DE-He78)079436c5442874052d541943e53145ef
|b 2
|u dkfz
700 1 _ |a Tredwell, Gregory D
|b 3
700 1 _ |a Wilmes, Anja
|b 4
700 1 _ |a Aschauer, Lydia
|b 5
700 1 _ |a Siskos, Alexandros P
|b 6
700 1 _ |a Sachinidis, Agapios
|b 7
700 1 _ |a Keun, Hector C
|b 8
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 9
|u dkfz
700 1 _ |a de Kok, Theo M
|b 10
700 1 _ |a Kleinjans, Jos C S
|b 11
700 1 _ |a Jennings, Paul
|b 12
773 _ _ |a 10.3389/fgene.2018.00558
|g Vol. 9, p. 558
|0 PERI:(DE-600)2606823-0
|p 558
|t Frontiers in genetics
|v 9
|y 2018
|x 1664-8021
909 C O |o oai:inrepo02.dkfz.de:142080
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)079436c5442874052d541943e53145ef
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT GENET : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21