001     142097
005     20240229105143.0
024 7 _ |a 10.18632/oncotarget.25032
|2 doi
024 7 _ |a pmid:29854288
|2 pmid
024 7 _ |a pmc:PMC5976474
|2 pmc
037 _ _ |a DKFZ-2018-02327
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Niland, Stephan
|b 0
245 _ _ |a Rhodocetin-αβ selectively breaks the endothelial barrier of the tumor vasculature in HT1080 fibrosarcoma and A431 epidermoid carcinoma tumor models.
260 _ _ |a [S.l.]
|c 2018
|b Impact Journals LLC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683544920_26275
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The tumor vasculature differs from normal blood vessels in morphology, composition and stability. Here, we describe a novel tumor vessel-disrupting mechanism. In an HT1080/mouse xenograft tumor model rhodocetin-αβ was highly effective in disrupting the tumor endothelial barrier. Mechanistically, rhodocetin-αβ triggered MET signaling via neuropilin-1. As both neuropilin-1 and MET were only lumen-exposed in a subset of abnormal tumor vessels, but not in normal vessels, the prime target of rhodocetin-αβ were these abnormal tumor vessels. Consequently, cells lining such tumor vessels became increasingly motile which compromised the vessel wall tightness. After this initial leakage, rhodocetin-αβ could leave the bloodstream and reach the as yet inaccessible neuropilin-1 on the basolateral side of endothelial cells and thus disrupt nearby vessels. Due to the specific neuropilin-1/MET co-distribution on cells lining such abnormal tumor vessels in contrast to normal endothelial cells, rhodocetin-αβ formed the necessary trimeric signaling complex of rhodocetin-αβ-MET-neuropilin-1 only in these abnormal tumor vessels. This selective attack of tumor vessels, sparing endothelial cell-lined vessels of normal tissues, suggests that the neuropilin-1-MET signaling axis may be a promising drugable target for anti-tumor therapy, and that rhodocetin-αβ may serve as a lead structure to develop novel anti-tumor drugs that target such vessels.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Komljenovic, Dorde
|0 P:(DE-He78)30816ab8532422ad8d4a8af55bc0d24b
|b 1
700 1 _ |a Macas, Jadranka
|b 2
700 1 _ |a Bracht, Thilo
|b 3
700 1 _ |a Bäuerle, Tobias
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liebner, Stefan
|b 5
700 1 _ |a Eble, Johannes A
|b 6
773 _ _ |a 10.18632/oncotarget.25032
|g Vol. 9, no. 32
|0 PERI:(DE-600)2560162-3
|n 32
|p 22406- 22422
|t OncoTarget
|v 9
|y 2018
|x 1949-2553
909 C O |p VDB
|o oai:inrepo02.dkfz.de:142097
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)30816ab8532422ad8d4a8af55bc0d24b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21