Home > Publications database > Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. > print |
001 | 142110 | ||
005 | 20240229105144.0 | ||
024 | 7 | _ | |a 10.1080/2162402X.2018.1500671 |2 doi |
024 | 7 | _ | |a pmid:30524892 |2 pmid |
024 | 7 | _ | |a pmc:PMC6279329 |2 pmc |
024 | 7 | _ | |a 2162-4011 |2 ISSN |
024 | 7 | _ | |a 2162-402X |2 ISSN |
024 | 7 | _ | |a altmetric:51242626 |2 altmetric |
037 | _ | _ | |a DKFZ-2018-02340 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Quandt, Jasmin |0 P:(DE-HGF)0 |b 0 |e First author |
245 | _ | _ | |a Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. |
260 | _ | _ | |a Abingdon |c 2018 |b Taylor & Franics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1680693090_11715 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Mutated proteins arising from somatic mutations in tumors are promising targets for cancer immunotherapy. They represent true tumor-specific antigens (TSAs) as they are exclusively expressed in tumors, reduce the risk of autoimmunity and are more likely to overcome tolerance compared to wild-type (wt) sequences. Hence, we designed a panel of long peptides (LPs, 28-35 aa) comprising driver gene mutations in TP35 and KRAS frequently found in gastrointestinal tumors to test their combined immunotherapeutic potential. We found increased numbers of T cells responsive against respective mutated and wt peptides in colorectal cancer patients that carry the tested mutations in their tumors than patients with other mutations. Further, active immunization of HLA(-A2/DR1)-humanized mice with mixes of the same mutated LPs yielded simultaneous, polyvalent CD8+/CD4+ T cell responses against the majority of peptides. Peptide-specific T cells possessed a multifunctional cytokine profile with CD4+ T cells showing a TH1-like phenotype. Two mutated peptides (Kras[G12V], p53[R248W]) induced significantly higher T cell responses than corresponding wt sequences and comprised HLA-A2/DR1-restricted mutated epitopes. However, vaccination with the same highly immunogenic LPs strongly increased systemic regulatory T cells (Treg) numbers in a syngeneic sarcoma model over-expressing these mutated protein variants and resulted in accelerated tumor outgrowth. In contrast, tumor outgrowth was delayed when vaccination was directed against tumor-intrinsic Kras/Tp53 mutations of lower immunogenicity. Conclusively, we show that LP vaccination targeting multiple mutated TSAs elicits polyvalent, multifunctional, and mutation-specific effector T cells capable of targeting tumors. However, the success of this therapeutic approach can be hampered by vaccination-induced, TSA-specific Tregs. |
536 | _ | _ | |a 314 - Tumor immunology (POF3-314) |0 G:(DE-HGF)POF3-314 |c POF3-314 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Schlude, Christoph |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bartoschek, Michael |0 0000-0002-1567-795X |b 2 |
700 | 1 | _ | |a Will, Rainer |0 P:(DE-He78)18218139eec55d83cf82679934e5cd75 |b 3 |u dkfz |
700 | 1 | _ | |a Cid-Arregui, Angel |0 P:(DE-He78)a30064f6b2d9ab959d35315d7668c091 |b 4 |u dkfz |
700 | 1 | _ | |a Schölch, Sebastian |0 0000-0003-0012-3177 |b 5 |
700 | 1 | _ | |a Reissfelder, Christoph |b 6 |
700 | 1 | _ | |a Weitz, Jürgen |b 7 |
700 | 1 | _ | |a Schneider, Martin |b 8 |
700 | 1 | _ | |a Wiemann, Stefan |0 P:(DE-He78)f6bebe05e7a748d3cbf9f59659567d52 |b 9 |u dkfz |
700 | 1 | _ | |a Momburg, Frank |0 P:(DE-He78)b2290261145f21c46f2d42783c69d104 |b 10 |u dkfz |
700 | 1 | _ | |a Beckhove, Philipp |0 P:(DE-He78)1732377f6242a18280bc6aaa196988d1 |b 11 |e Last author |u dkfz |
773 | _ | _ | |a 10.1080/2162402X.2018.1500671 |g Vol. 7, no. 12, p. e1500671 - |0 PERI:(DE-600)2645309-5 |n 12 |p e1500671 - |t OncoImmunology |v 7 |y 2018 |x 2162-402X |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:142110 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 0000-0002-1567-795X |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)18218139eec55d83cf82679934e5cd75 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)a30064f6b2d9ab959d35315d7668c091 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)f6bebe05e7a748d3cbf9f59659567d52 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)b2290261145f21c46f2d42783c69d104 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)1732377f6242a18280bc6aaa196988d1 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-314 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Tumor immunology |x 0 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ONCOIMMUNOLOGY : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ONCOIMMUNOLOGY : 2017 |
920 | 1 | _ | |0 I:(DE-He78)D015-20160331 |k D015 |l Translationale Immunologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B050-20160331 |k B050 |l B050 Molekulare Genomanalyse |x 1 |
920 | 1 | _ | |0 I:(DE-He78)W110-20160331 |k W110 |l Microarrays |x 2 |
920 | 1 | _ | |0 I:(DE-He78)D120-20160331 |k D120 |l D120 Angewandte Tumor-Immunität |x 3 |
920 | 1 | _ | |0 I:(DE-He78)D122-20160331 |k D122 |l D122 AG Gezielte Tumorvakzine |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)D015-20160331 |
980 | _ | _ | |a I:(DE-He78)B050-20160331 |
980 | _ | _ | |a I:(DE-He78)W110-20160331 |
980 | _ | _ | |a I:(DE-He78)D120-20160331 |
980 | _ | _ | |a I:(DE-He78)D122-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|