Home > Publications database > 7T ultra-high field body MR imaging with an 8-channel transmit/32-channel receive radiofrequency coil array. > print |
001 | 142114 | ||
005 | 20240229105144.0 | ||
024 | 7 | _ | |a 10.1002/mp.12931 |2 doi |
024 | 7 | _ | |a pmid:29679498 |2 pmid |
024 | 7 | _ | |a 0094-2405 |2 ISSN |
024 | 7 | _ | |a 1522-8541 |2 ISSN |
024 | 7 | _ | |a 2473-4209 |2 ISSN |
024 | 7 | _ | |a altmetric:67256379 |2 altmetric |
037 | _ | _ | |a DKFZ-2018-02344 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Rietsch, Stefan H G |b 0 |
245 | _ | _ | |a 7T ultra-high field body MR imaging with an 8-channel transmit/32-channel receive radiofrequency coil array. |
260 | _ | _ | |a College Park, Md. |c 2018 |b AAPM |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1549633414_21001 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this work, a combined body coil array with eight transmit/receive (Tx/Rx) meander elements and with 24 receive-only (Rx) loops (8Tx/32Rx) was developed and evaluated in comparison with an 8-channel transmit/receive body array (8Tx/Rx) based on meander elements serving as the reference standard.Systematic evaluation of the RF array was performed on a body-sized phantom. Body imaging at 7T was performed in six volunteers in the body regions pelvis, abdomen, and heart. Coil characteristics such as signal-to-noise ratio, acceleration capability, g-factors, S-parameters, noise correlation, and B1+ maps were assessed. Safety was ensured by numerical simulations using a coil model validated by dosimetric field measurements.Meander elements and loops are intrinsically well decoupled with a maximum coupling value of -20.5 dB. Safe use of the 8Tx/32Rx array could be demonstrated. High gain in signal-to-noise ratio (33% in the subject's center) could be shown for the 8Tx/32Rx array compared to the 8Tx/Rx array. Improvement in acceleration capability in all investigations could be demonstrated. For example, the 8Tx/32Rx array provides lower g-factors in the right-left and anterior-posterior directions with R = 3 undersampling as compared to the 8Tx/Rx array using R = 2. Both arrays are very similar regarding their RF transmit performance. Excellent image quality in the investigated body regions could be achieved with the 8Tx/32Rx array.In this work, we show that a combination of eight meander elements and 24 loop receive elements is possible without impeding transmit performance. Improved SNR and g-factor performance compared to an RF array without these loops is demonstrated. Body MRI at 7T with the 8Tx/32Rx array could be accomplished in the heart, abdomen, and pelvis with excellent image quality. |
536 | _ | _ | |a 315 - Imaging and radiooncology (POF3-315) |0 G:(DE-HGF)POF3-315 |c POF3-315 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Orzada, Stephan |b 1 |
700 | 1 | _ | |a Maderwald, Stefan |b 2 |
700 | 1 | _ | |a Brunheim, Sascha |b 3 |
700 | 1 | _ | |a Philips, Bart W J |b 4 |
700 | 1 | _ | |a Scheenen, Tom W J |b 5 |
700 | 1 | _ | |a Ladd, Mark |0 P:(DE-He78)022611a2317e4de40fd912e0a72293a8 |b 6 |u dkfz |
700 | 1 | _ | |a Quick, Harald H |b 7 |
773 | _ | _ | |a 10.1002/mp.12931 |g Vol. 45, no. 7, p. 2978 - 2990 |0 PERI:(DE-600)1466421-5 |n 7 |p 2978 - 2990 |t Medical physics |v 45 |y 2018 |x 2473-4209 |
909 | C | O | |o oai:inrepo02.dkfz.de:142114 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)022611a2317e4de40fd912e0a72293a8 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-315 |2 G:(DE-HGF)POF3-300 |v Imaging and radiooncology |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MED PHYS : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l Medizinische Physik in der Radiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|