000142128 001__ 142128
000142128 005__ 20240229105145.0
000142128 0247_ $$2doi$$a10.1002/nbm.3926
000142128 0247_ $$2pmid$$apmid:29694688
000142128 0247_ $$2ISSN$$a0952-3480
000142128 0247_ $$2ISSN$$a1099-1492
000142128 0247_ $$2altmetric$$aaltmetric:70320308
000142128 037__ $$aDKFZ-2018-02358
000142128 041__ $$aeng
000142128 082__ $$a610
000142128 1001_ $$aSchneider, Till M$$b0
000142128 245__ $$aQuantitative susceptibility mapping and 23 Na imaging-based in vitro characterization of blood clotting kinetics.
000142128 260__ $$aNew York, NY$$bWiley$$c2018
000142128 3367_ $$2DRIVER$$aarticle
000142128 3367_ $$2DataCite$$aOutput Types/Journal article
000142128 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549633232_20593
000142128 3367_ $$2BibTeX$$aARTICLE
000142128 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142128 3367_ $$00$$2EndNote$$aJournal Article
000142128 520__ $$aBlood clotting is a fundamental biochemical process in post-hemorrhagic hemostasis. Although the varying appearance of coagulating blood in T1 - and T2 -weighted images is widely used to qualitatively determine bleeding age, the technique permits only a rough discrimination of coagulation stages, and it remains difficult to distinguish acute and chronic hemorrhagic stages because of low T1 - and T2 -weighted signal intensities in both instances. To investigate new biomedical parameters for magnetic resonance imaging-based characterization of blood clotting kinetics, sodium imaging and quantitative susceptibility mapping (QSM) were compared with conventional T1 - and T2 -weighted imaging, as well as with biochemical hemolysis parameters. For this purpose, a blood-filled spherical agar phantom was investigated daily for 14 days, as well as after 24 days at 7 T after initial preparation with fresh blood. T1 - and T2 -weighted sequences, a three-dimensional (3D) gradient echo sequence and a density-adapted 3D radial projection reconstruction pulse sequence for 23 Na imaging were applied. For hemolysis estimations, free hemoglobin and free potassium concentrations were measured photometrically and with the direct ion-selective electrode method, respectively, in separate heparinized whole-blood samples along the same timeline. Initial mean susceptibility was low (0.154 ± 0.020 ppm) and increased steadily during the course of coagulation to reach up to 0.570 ± 0.165 ppm. The highest total sodium (NaT) values (1.02 ± 0.06 arbitrary units) in the clot were observed initially, dropped to 0.69 ± 0.13 arbitrary units after one day and increased again to initial values. Compartmentalized sodium (NaS) showed a similar signal evolution, and the NaS/NaT ratio steadily increased over clot evolution. QSM depicts clot evolution in vitro as a process associated with hemoglobin accumulation and transformation, and enables the differentiation of the acute and chronic coagulation stages. Sodium imaging visualizes clotting independent of susceptibility and seems to correspond to clot integrity. A combination of QSM and sodium imaging may enhance the characterization of hemorrhage.
000142128 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000142128 588__ $$aDataset connected to CrossRef, PubMed,
000142128 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b1$$udkfz
000142128 7001_ $$aZorn, Markus$$b2
000142128 7001_ $$0P:(DE-HGF)0$$aWetscherek, Andreas$$b3
000142128 7001_ $$aBendszus, Martin$$b4
000142128 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b5$$udkfz
000142128 7001_ $$0P:(DE-He78)4e04dcea1b6a4449a8fa005bcf36322b$$aStraub, Sina$$b6$$eLast author$$udkfz
000142128 773__ $$0PERI:(DE-600)2002003-X$$a10.1002/nbm.3926$$gVol. 31, no. 6, p. e3926 -$$n6$$pe3926$$tNMR in biomedicine$$v31$$x0952-3480$$y2018
000142128 909CO $$ooai:inrepo02.dkfz.de:142128$$pVDB
000142128 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000142128 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000142128 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000142128 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4e04dcea1b6a4449a8fa005bcf36322b$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000142128 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000142128 9141_ $$y2018
000142128 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000142128 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNMR BIOMED : 2017
000142128 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142128 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142128 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142128 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142128 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000142128 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142128 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142128 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000142128 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000142128 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000142128 980__ $$ajournal
000142128 980__ $$aVDB
000142128 980__ $$aI:(DE-He78)E020-20160331
000142128 980__ $$aUNRESTRICTED