000142144 001__ 142144
000142144 005__ 20240229105146.0
000142144 0247_ $$2doi$$a10.1093/bib/bbx032
000142144 0247_ $$2pmid$$apmid:28379479
000142144 0247_ $$2ISSN$$a1467-5463
000142144 0247_ $$2ISSN$$a1477-4054
000142144 0247_ $$2altmetric$$aaltmetric:18561587
000142144 037__ $$aDKFZ-2018-02374
000142144 041__ $$aeng
000142144 082__ $$a004
000142144 1001_ $$0P:(DE-He78)2ef631585610340ff425c9c31fcabd03$$aTichy, Diana$$b0$$eFirst author
000142144 245__ $$aExperimental design and data analysis of Ago-RIP-Seq experiments for the identification of microRNA targets.
000142144 260__ $$aOxford [u.a.]$$bOxford University Press$$c2018
000142144 3367_ $$2DRIVER$$aarticle
000142144 3367_ $$2DataCite$$aOutput Types/Journal article
000142144 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661421378_31348
000142144 3367_ $$2BibTeX$$aARTICLE
000142144 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142144 3367_ $$00$$2EndNote$$aJournal Article
000142144 520__ $$aThe identification of microRNA (miRNA) target genes is crucial for understanding miRNA function. Many methods for the genome-wide miRNA target identification have been developed in recent years; however, they have several limitations including the dependence on low-confident prediction programs and artificial miRNA manipulations. Ago-RNA immunoprecipitation combined with high-throughput sequencing (Ago-RIP-Seq) is a promising alternative. However, appropriate statistical data analysis algorithms taking into account the experimental design and the inherent noise of such experiments are largely lacking.Here, we investigate the experimental design for Ago-RIP-Seq and examine biostatistical methods to identify de novo miRNA target genes. Statistical approaches considered are either based on a negative binomial model fit to the read count data or applied to transformed data using a normal distribution-based generalized linear model. We compare them by a real data simulation study using plasmode data sets and evaluate the suitability of the approaches to detect true miRNA targets by sensitivity and false discovery rates. Our results suggest that simple approaches like linear regression models on (appropriately) transformed read count data are preferable.
000142144 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000142144 588__ $$aDataset connected to CrossRef, PubMed,
000142144 7001_ $$0P:(DE-HGF)0$$aPickl, Julia Maria Anna$$b1$$eFirst author
000142144 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b2$$eLast author
000142144 7001_ $$0P:(DE-He78)7483734fd8ab316391aa604c95f0e98a$$aSültmann, Holger$$b3$$eLast author
000142144 773__ $$0PERI:(DE-600)2036055-1$$a10.1093/bib/bbx032$$gVol. 19, no. 5, p. 918 - 929$$n5$$p918 - 929$$tBriefings in bioinformatics$$v19$$x1477-4054$$y2018
000142144 909CO $$ooai:inrepo02.dkfz.de:142144$$pVDB
000142144 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2ef631585610340ff425c9c31fcabd03$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000142144 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000142144 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000142144 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7483734fd8ab316391aa604c95f0e98a$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000142144 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000142144 9141_ $$y2018
000142144 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000142144 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRIEF BIOINFORM : 2017
000142144 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142144 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142144 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142144 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000142144 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000142144 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000142144 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142144 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142144 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142144 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000142144 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000142144 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRIEF BIOINFORM : 2017
000142144 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000142144 9201_ $$0I:(DE-He78)B063-20160331$$kB063$$lB063 Krebsgenomforschung$$x1
000142144 980__ $$ajournal
000142144 980__ $$aVDB
000142144 980__ $$aI:(DE-He78)C060-20160331
000142144 980__ $$aI:(DE-He78)B063-20160331
000142144 980__ $$aUNRESTRICTED