001     142144
005     20240229105146.0
024 7 _ |a 10.1093/bib/bbx032
|2 doi
024 7 _ |a pmid:28379479
|2 pmid
024 7 _ |a 1467-5463
|2 ISSN
024 7 _ |a 1477-4054
|2 ISSN
024 7 _ |a altmetric:18561587
|2 altmetric
037 _ _ |a DKFZ-2018-02374
041 _ _ |a eng
082 _ _ |a 004
100 1 _ |a Tichy, Diana
|0 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
|b 0
|e First author
245 _ _ |a Experimental design and data analysis of Ago-RIP-Seq experiments for the identification of microRNA targets.
260 _ _ |a Oxford [u.a.]
|c 2018
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661421378_31348
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The identification of microRNA (miRNA) target genes is crucial for understanding miRNA function. Many methods for the genome-wide miRNA target identification have been developed in recent years; however, they have several limitations including the dependence on low-confident prediction programs and artificial miRNA manipulations. Ago-RNA immunoprecipitation combined with high-throughput sequencing (Ago-RIP-Seq) is a promising alternative. However, appropriate statistical data analysis algorithms taking into account the experimental design and the inherent noise of such experiments are largely lacking.Here, we investigate the experimental design for Ago-RIP-Seq and examine biostatistical methods to identify de novo miRNA target genes. Statistical approaches considered are either based on a negative binomial model fit to the read count data or applied to transformed data using a normal distribution-based generalized linear model. We compare them by a real data simulation study using plasmode data sets and evaluate the suitability of the approaches to detect true miRNA targets by sensitivity and false discovery rates. Our results suggest that simple approaches like linear regression models on (appropriately) transformed read count data are preferable.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Pickl, Julia Maria Anna
|0 P:(DE-HGF)0
|b 1
|e First author
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 2
|e Last author
700 1 _ |a Sültmann, Holger
|0 P:(DE-He78)7483734fd8ab316391aa604c95f0e98a
|b 3
|e Last author
773 _ _ |a 10.1093/bib/bbx032
|g Vol. 19, no. 5, p. 918 - 929
|0 PERI:(DE-600)2036055-1
|n 5
|p 918 - 929
|t Briefings in bioinformatics
|v 19
|y 2018
|x 1477-4054
909 C O |p VDB
|o oai:inrepo02.dkfz.de:142144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)7483734fd8ab316391aa604c95f0e98a
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRIEF BIOINFORM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BRIEF BIOINFORM : 2017
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)B063-20160331
|k B063
|l B063 Krebsgenomforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)B063-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21