000142189 001__ 142189
000142189 005__ 20240229105146.0
000142189 0247_ $$2doi$$a10.1088/1361-6560/aae659
000142189 0247_ $$2pmid$$apmid:30418942
000142189 0247_ $$2ISSN$$a0031-9155
000142189 0247_ $$2ISSN$$a1361-6560
000142189 0247_ $$2altmetric$$aaltmetric:51126429
000142189 037__ $$aDKFZ-2019-00003
000142189 041__ $$aeng
000142189 082__ $$a530
000142189 1001_ $$aUnkelbach, Jan$$b0
000142189 245__ $$aRobust radiotherapy planning.
000142189 260__ $$aBristol$$bIOP Publ.$$c2018
000142189 3367_ $$2DRIVER$$aarticle
000142189 3367_ $$2DataCite$$aOutput Types/Journal article
000142189 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549626845_21030
000142189 3367_ $$2BibTeX$$aARTICLE
000142189 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142189 3367_ $$00$$2EndNote$$aJournal Article
000142189 520__ $$aMotion and uncertainty in radiotherapy is traditionally handled via margins. The clinical target volume (CTV) is expanded to a larger planning target volume (PTV), which is irradiated to the prescribed dose. However, the PTV concept has several limitations, especially in proton therapy. Therefore, robust and probabilistic optimization methods have been developed that directly incorporate motion and uncertainty into treatment plan optimization for intensity modulated radiotherapy (IMRT) and intensity modulated proton therapy (IMPT). Thereby, the explicit definition of a PTV becomes obsolete and treatment plan optimization is directly based on the CTV. Initial work focused on random and systematic setup errors in IMRT. Later, inter-fraction prostate motion and intra-fraction lung motion became a research focus. Over the past ten years, IMPT has emerged as a new application for robust planning methods. In proton therapy, range or setup errors may lead to dose degradation and misalignment of dose contributions from different beams - a problem that cannot generally be addressed by margins. Therefore, IMPT has led to the first implementations of robust planning methods in commercial planning systems, making these methods available for clinical use. This paper first summarizes the limitations of the PTV concept. Subsequently, robust optimization methods are introduced and their applications in IMRT and IMPT planning are reviewed.
000142189 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000142189 588__ $$aDataset connected to CrossRef, PubMed,
000142189 7001_ $$aAlber, Markus$$b1
000142189 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b2$$udkfz
000142189 7001_ $$aBokrantz, Rasmus$$b3
000142189 7001_ $$aChan, Timothy C Y$$b4
000142189 7001_ $$aDeasy, Joseph O$$b5
000142189 7001_ $$aFredriksson, Albin$$b6
000142189 7001_ $$aGorissen, Bram L$$b7
000142189 7001_ $$avan Herk, Marcel$$b8
000142189 7001_ $$aLiu, Wei$$b9
000142189 7001_ $$aMahmoudzadeh, Houra$$b10
000142189 7001_ $$aNohadani, Omid$$b11
000142189 7001_ $$aSiebers, Jeffrey V$$b12
000142189 7001_ $$aWitte, Marnix$$b13
000142189 7001_ $$aXu, Huijun$$b14
000142189 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/aae659$$gVol. 63, no. 22, p. 22TR02 -$$n22$$p22TR02 $$tPhysics in medicine and biology$$v63$$x1361-6560$$y2018
000142189 909CO $$ooai:inrepo02.dkfz.de:142189$$pVDB
000142189 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000142189 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000142189 9141_ $$y2018
000142189 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000142189 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000142189 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2017
000142189 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142189 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142189 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000142189 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000142189 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142189 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000142189 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142189 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142189 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000142189 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000142189 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000142189 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lMedizinische Physik in der Strahlentherapie$$x0
000142189 980__ $$ajournal
000142189 980__ $$aVDB
000142189 980__ $$aI:(DE-He78)E040-20160331
000142189 980__ $$aUNRESTRICTED