001     142199
005     20240229105146.0
024 7 _ |2 doi
|a 10.1182/blood-2018-03-840132
024 7 _ |2 pmid
|a pmid:29884741
024 7 _ |2 pmc
|a pmc:PMC6097138
024 7 _ |2 ISSN
|a 0006-4971
024 7 _ |2 ISSN
|a 1079-6533
024 7 _ |2 ISSN
|a 1528-0020
024 7 _ |2 ISSN
|a 1938-1336
024 7 _ |a altmetric:43568290
|2 altmetric
037 _ _ |a DKFZ-2019-00013
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |0 0000-0002-8615-6254
|a Walker, Brian A
|b 0
245 _ _ |a Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma.
260 _ _ |a Stanford, Calif.
|b HighWire Press
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1555505364_13124
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Understanding the profile of oncogene and tumor suppressor gene mutations with their interactions and impact on the prognosis of multiple myeloma (MM) can improve the definition of disease subsets and identify pathways important in disease pathobiology. Using integrated genomics of 1273 newly diagnosed patients with MM, we identified 63 driver genes, some of which are novel, including IDH1, IDH2, HUWE1, KLHL6, and PTPN11 Oncogene mutations are significantly more clonal than tumor suppressor mutations, indicating they may exert a bigger selective pressure. Patients with more driver gene abnormalities are associated with worse outcomes, as are identified mechanisms of genomic instability. Oncogenic dependencies were identified between mutations in driver genes, common regions of copy number change, and primary translocation and hyperdiploidy events. These dependencies included associations with t(4;14) and mutations in FGFR3, DIS3, and PRKD2; t(11;14) with mutations in CCND1 and IRF4; t(14;16) with mutations in MAF, BRAF, DIS3, and ATM; and hyperdiploidy with gain 11q, mutations in FAM46C, and MYC rearrangements. These associations indicate that the genomic landscape of myeloma is predetermined by the primary events upon which further dependencies are built, giving rise to a nonrandom accumulation of genetic hits. Understanding these dependencies may elucidate potential evolutionary patterns and lead to better treatment regimens.
536 _ _ |0 G:(DE-HGF)POF3-317
|a 317 - Translational cancer research (POF3-317)
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Mavrommatis, Konstantinos
|b 1
700 1 _ |0 0000-0002-9416-7818
|a Wardell, Christopher P
|b 2
700 1 _ |a Ashby, T Cody
|b 3
700 1 _ |a Bauer, Michael
|b 4
700 1 _ |a Davies, Faith E
|b 5
700 1 _ |a Rosenthal, Adam
|b 6
700 1 _ |a Wang, Hongwei
|b 7
700 1 _ |a Qu, Pingping
|b 8
700 1 _ |a Hoering, Antje
|b 9
700 1 _ |a Samur, Mehmet
|b 10
700 1 _ |a Towfic, Fadi
|b 11
700 1 _ |a Ortiz, Maria
|b 12
700 1 _ |a Flynt, Erin
|b 13
700 1 _ |a Yu, Zhinuan
|b 14
700 1 _ |a Yang, Zhihong
|b 15
700 1 _ |a Rozelle, Dan
|b 16
700 1 _ |a Obenauer, John
|b 17
700 1 _ |a Trotter, Matthew
|b 18
700 1 _ |a Auclair, Daniel
|b 19
700 1 _ |a Keats, Jonathan
|b 20
700 1 _ |a Bolli, Niccolo
|b 21
700 1 _ |a Fulciniti, Mariateresa
|b 22
700 1 _ |a Szalat, Raphael
|b 23
700 1 _ |a Moreau, Philippe
|b 24
700 1 _ |a Durie, Brian
|b 25
700 1 _ |a Stewart, A Keith
|b 26
700 1 _ |a Goldschmidt, Hartmut
|b 27
700 1 _ |0 P:(DE-He78)1cb537e833afd985097ccfaddffb2ef3
|a Raab, Marc-Steffen
|b 28
|u dkfz
700 1 _ |a Einsele, Hermann
|b 29
700 1 _ |a Sonneveld, Pieter
|b 30
700 1 _ |a San Miguel, Jesus
|b 31
700 1 _ |a Lonial, Sagar
|b 32
700 1 _ |a Jackson, Graham H
|b 33
700 1 _ |a Anderson, Kenneth C
|b 34
700 1 _ |a Avet-Loiseau, Herve
|b 35
700 1 _ |a Munshi, Nikhil
|b 36
700 1 _ |a Thakurta, Anjan
|b 37
700 1 _ |a Morgan, Gareth J
|b 38
773 _ _ |0 PERI:(DE-600)1468538-3
|a 10.1182/blood-2018-03-840132
|g Vol. 132, no. 6, p. blood-2018-03-840132 -
|n 6
|p 587-597
|t Blood
|v 132
|x 0006-4971
|y 2018
909 C O |o oai:inrepo02.dkfz.de:142199
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)1cb537e833afd985097ccfaddffb2ef3
|a Deutsches Krebsforschungszentrum
|b 28
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-317
|1 G:(DE-HGF)POF3-310
|2 G:(DE-HGF)POF3-300
|a DE-HGF
|l Krebsforschung
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b BLOOD : 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1110
|2 StatID
|a DBCoverage
|b Current Contents - Clinical Medicine
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9915
|2 StatID
|a IF >= 15
|b BLOOD : 2017
920 1 _ |0 I:(DE-He78)G170-20160331
|k G170
|l Experimentelle Therapien hämatologischer Neoplasien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G170-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21