000142297 001__ 142297
000142297 005__ 20240229105147.0
000142297 0247_ $$2doi$$a10.1111/cei.13053
000142297 0247_ $$2pmid$$apmid:28940439
000142297 0247_ $$2pmc$$apmc:PMC5721238
000142297 0247_ $$2ISSN$$a0009-9104
000142297 0247_ $$2ISSN$$a0964-2536
000142297 0247_ $$2ISSN$$a1365-2249
000142297 0247_ $$2altmetric$$aaltmetric:26505611
000142297 037__ $$aDKFZ-2019-00080
000142297 041__ $$aeng
000142297 082__ $$a570
000142297 1001_ $$00000-0003-3514-7523$$aBorchers, S.$$b0
000142297 245__ $$aDetection of ABCB5 tumour antigen-specific CD8+ T cells in melanoma patients and implications for immunotherapy.
000142297 260__ $$aOxford$$bWiley-Blackwell52004$$c2018
000142297 3367_ $$2DRIVER$$aarticle
000142297 3367_ $$2DataCite$$aOutput Types/Journal article
000142297 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549876230_1500
000142297 3367_ $$2BibTeX$$aARTICLE
000142297 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142297 3367_ $$00$$2EndNote$$aJournal Article
000142297 520__ $$aATP binding cassette subfamily B member 5 (ABCB5) has been identified as a tumour-initiating cell marker and is expressed in various malignancies, including melanoma. Moreover, treatment with anti-ABCB5 monoclonal antibodies has been shown to inhibit tumour growth in xenotransplantation models. Therefore, ABCB5 represents a potential target for cancer immunotherapy. However, cellular immune responses against ABCB5 in humans have not been described so far. Here, we investigated whether ABCB5-reactive T cells are present in human melanoma patients and tested the applicability of ABCB5-derived peptides for experimental induction of human T cell responses. Peripheral blood mononuclear cells (PBMNC) isolated from blood samples of melanoma patients (n = 40) were stimulated with ABCB5 peptides, followed by intracellular cytokine staining (ICS) for interferon (IFN)-γ and tumour necrosis factor (TNF)-α. To evaluate immunogenicity of ABCB5 peptides in naive healthy donors, CD8 T cells were co-cultured with ABCB5 antigen-loaded autologous dendritic cells (DC). ABCB5 reactivity in expanded T cells was assessed similarly by ICS. ABCB5-reactive CD8+ T cells were detected ex vivo in 19 of 29 patients, melanoma antigen recognised by T cells (MART-1)-reactive CD8+ T cells in six of 21 patients. In this small, heterogeneous cohort, reactivity against ABCB5 was significantly higher than against MART-1. It occurred significantly more often and independently of clinical characteristics. Reactivity against ABCB5 could be induced in 14 of 16 healthy donors in vitro by repeated stimulation with peptide-loaded autologous DC. As ABCB5-reactive CD8 T cells can be found in the peripheral blood of melanoma patients and an ABCB5-specific response can be induced in vitro in naive donors, ABCB5 could be a new target for immunotherapies in melanoma.
000142297 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000142297 588__ $$aDataset connected to CrossRef, PubMed,
000142297 650_7 $$2NLM Chemicals$$aABCB5 protein, human
000142297 650_7 $$2NLM Chemicals$$aATP Binding Cassette Transporter, Subfamily B, Member 1
000142297 650_7 $$2NLM Chemicals$$aAntigens, Neoplasm
000142297 650_7 $$2NLM Chemicals$$aCytokines
000142297 650_7 $$2NLM Chemicals$$aEpitopes, T-Lymphocyte
000142297 650_7 $$2NLM Chemicals$$aPeptides
000142297 7001_ $$aMaβlo, C.$$b1
000142297 7001_ $$aMüller, C. A.$$b2
000142297 7001_ $$aTahedl, A.$$b3
000142297 7001_ $$aVolkind, J.$$b4
000142297 7001_ $$0P:(DE-He78)a901a40b998327632773e7c6da807c0b$$aNowak, Y.$$b5$$udkfz
000142297 7001_ $$0P:(DE-He78)38be34240daf8b47325afc7910e77f7b$$aUmansky, V.$$b6$$udkfz
000142297 7001_ $$aEsterlechner, J.$$b7
000142297 7001_ $$aFrank, M. H.$$b8
000142297 7001_ $$aGanss, C.$$b9
000142297 7001_ $$aKluth, M. A.$$b10
000142297 7001_ $$0P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3$$aUtikal, Jochen$$b11$$eLast author$$udkfz
000142297 773__ $$0PERI:(DE-600)218531-3$$a10.1111/cei.13053$$gVol. 191, no. 1, p. 74 - 83$$n1$$p74 - 83$$tClinical and experimental immunology$$v191$$x0009-9104$$y2018
000142297 909CO $$ooai:inrepo02.dkfz.de:142297$$pVDB
000142297 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142297 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIN EXP IMMUNOL : 2015
000142297 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142297 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142297 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000142297 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000142297 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000142297 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000142297 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142297 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142297 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000142297 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000142297 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000142297 9141_ $$y2018
000142297 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a901a40b998327632773e7c6da807c0b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000142297 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)38be34240daf8b47325afc7910e77f7b$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000142297 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000142297 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000142297 9201_ $$0I:(DE-He78)G300-20160331$$kG300$$lKKE Dermatoonkologie$$x0
000142297 980__ $$ajournal
000142297 980__ $$aVDB
000142297 980__ $$aI:(DE-He78)G300-20160331
000142297 980__ $$aUNRESTRICTED