001     142311
005     20240229105147.0
024 7 _ |2 doi
|a 10.5114/wo.2018.73874
024 7 _ |2 pmid
|a pmid:29628788
024 7 _ |2 pmc
|a pmc:PMC5885081
024 7 _ |2 ISSN
|a 1428-2526
024 7 _ |2 ISSN
|a 1897-4309
024 7 _ |a altmetric:34731051
|2 altmetric
037 _ _ |a DKFZ-2019-00094
041 _ _ |a eng
082 _ _ |a 530
100 1 _ |a Chouaib, Salem
|b 0
245 _ _ |a The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment.
260 _ _ |a PoznaƄ
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1549542919_22182
|x Review Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Hypoxia characterizes growing tumors and contributes significantly to their aggressiveness. Hypoxia-inducible factors (HIFs 1 and 2) are stabilized and act differentially as transcription factors on tumor growth and are responsible for important cancer hallmarks such as pathologic angiogenesis, cellular proliferation, apoptosis, differentiation and genetic instability as well as affecting tumor metabolism, tumor immune responses, invasion and metastasis. Taking into account the tumor tissue as a whole and considering the interplay of the various partners which react with hypoxia in the tumor site lead to reconsideration of the treatment strategies. Key limitations of treatment success result from the adaptation to the hypoxic milieu sustained by tumor anarchic angiogenesis. This raises immune tolerance by influencing the recruitment of immunosuppressive cells as bone marrow derived suppressor cells (MDSC) or by impairing the infiltration and killing of tumor cells by cytotoxic cells at the level of the endothelial cell wall of the hypoxic tumor vessels, as summarized in the schematic abstract.
536 _ _ |0 G:(DE-HGF)POF3-317
|a 317 - Translational cancer research (POF3-317)
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |0 P:(DE-He78)38be34240daf8b47325afc7910e77f7b
|a Umansky, Viktor
|b 1
|u dkfz
700 1 _ |a Kieda, Claudine
|b 2
773 _ _ |0 PERI:(DE-600)2138950-0
|a 10.5114/wo.2018.73874
|g Vol. 22, no. 1A, p. 7 - 13
|n 1A
|p 7 - 13
|t Contemporary oncology
|v 22
|x 1428-2526
|y 2018
909 C O |o oai:inrepo02.dkfz.de:142311
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)38be34240daf8b47325afc7910e77f7b
|a Deutsches Krebsforschungszentrum
|b 1
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-317
|1 G:(DE-HGF)POF3-310
|2 G:(DE-HGF)POF3-300
|a DE-HGF
|l Krebsforschung
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Double blind peer review
915 _ _ |0 LIC:(DE-HGF)CCBYNCSANV
|2 V:(DE-HGF)
|a Creative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA (No Version)
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0112
|2 StatID
|a WoS
|b Emerging Sources Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
920 1 _ |0 I:(DE-He78)G300-20160331
|k G300
|l KKE Dermatoonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G300-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21