000142437 001__ 142437
000142437 005__ 20240229105148.0
000142437 0247_ $$2doi$$a10.1093/ije/dyy119
000142437 0247_ $$2pmid$$apmid:29982629
000142437 0247_ $$2pmc$$apmc:PMC6280930
000142437 0247_ $$2ISSN$$a0300-5771
000142437 0247_ $$2ISSN$$a1464-3685
000142437 0247_ $$2altmetric$$aaltmetric:45577435
000142437 037__ $$aDKFZ-2019-00157
000142437 041__ $$aeng
000142437 082__ $$a610
000142437 1001_ $$aIqbal, Khalid$$b0
000142437 245__ $$aComparison of metabolite networks from four German population-based studies.
000142437 260__ $$aOxford$$bOxford Univ. Press$$c2018
000142437 3367_ $$2DRIVER$$aarticle
000142437 3367_ $$2DataCite$$aOutput Types/Journal article
000142437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549874570_32197
000142437 3367_ $$2BibTeX$$aARTICLE
000142437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142437 3367_ $$00$$2EndNote$$aJournal Article
000142437 520__ $$aMetabolite networks are suggested to reflect biological pathways in health and disease. However, it is unknown whether such metabolite networks are reproducible across different populations. Therefore, the current study aimed to investigate similarity of metabolite networks in four German population-based studies.One hundred serum metabolites were quantified in European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (n = 2458), EPIC-Heidelberg (n = 812), KORA (Cooperative Health Research in the Augsburg Region) (n = 3029) and CARLA (Cardiovascular Disease, Living and Ageing in Halle) (n = 1427) with targeted metabolomics. In a cross-sectional analysis, Gaussian graphical models were used to construct similar networks of 100 edges each, based on partial correlations of these metabolites. The four metabolite networks of the top 100 edges were compared based on (i) common features, i.e. number of common edges, Pearson correlation (r) and hamming distance (h); and (ii) meta-analysis of the four networks.Among the four networks, 57 common edges and 66 common nodes (metabolites) were identified. Pairwise network comparisons showed moderate to high similarity (r = 63-0.96, h = 7-72), among the networks. Meta-analysis of the networks showed that, among the 100 edges and 89 nodes of the meta-analytic network, 57 edges and 66 metabolites were present in all the four networks, 58-76 edges and 75-89 nodes were present in at least three networks, and 63-84 edges and 76-87 edges were present in at least two networks. The meta-analytic network showed clear grouping of 10 sphingolipids, 8 lyso-phosphatidylcholines, 31 acyl-alkyl-phosphatidylcholines, 30 diacyl-phosphatidylcholines, 8 amino acids and 2 acylcarnitines.We found structural similarity in metabolite networks from four large studies. Using a meta-analytic network, as a new approach for combining metabolite data from different studies, closely related metabolites could be identified, for some of which the biological relationships in metabolic pathways have been previously described. They are candidates for further investigation to explore their potential role in biological processes.
000142437 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000142437 588__ $$aDataset connected to CrossRef, PubMed,
000142437 7001_ $$aDietrich, Stefan$$b1
000142437 7001_ $$aWittenbecher, Clemens$$b2
000142437 7001_ $$aKrumsiek, Jan$$b3
000142437 7001_ $$0P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aKühn, Tilman$$b4$$udkfz
000142437 7001_ $$aLacruz, Maria Elena$$b5
000142437 7001_ $$aKluttig, Alexander$$b6
000142437 7001_ $$aPrehn, Cornelia$$b7
000142437 7001_ $$aAdamski, Jerzy$$b8
000142437 7001_ $$avon Bergen, Martin$$b9
000142437 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b10$$udkfz
000142437 7001_ $$aSchulze, Matthias B$$b11
000142437 7001_ $$aBoeing, Heiner$$b12
000142437 7001_ $$aFloegel, Anna$$b13
000142437 773__ $$0PERI:(DE-600)1494592-7$$a10.1093/ije/dyy119$$gVol. 47, no. 6, p. 2070 - 2081$$n6$$p2070 - 2081$$tInternational journal of epidemiology$$v47$$x1464-3685$$y2018
000142437 909CO $$ooai:inrepo02.dkfz.de:142437$$pVDB
000142437 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000142437 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142437 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142437 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000142437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J EPIDEMIOL : 2017
000142437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142437 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000142437 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000142437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142437 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000142437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142437 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142437 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000142437 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000142437 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000142437 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J EPIDEMIOL : 2017
000142437 9141_ $$y2018
000142437 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000142437 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000142437 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000142437 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x0
000142437 980__ $$ajournal
000142437 980__ $$aVDB
000142437 980__ $$aI:(DE-He78)C020-20160331
000142437 980__ $$aUNRESTRICTED