001     142471
005     20240229105148.0
024 7 _ |a 10.1093/bioinformatics/bty461
|2 doi
024 7 _ |a pmid:29878078
|2 pmid
024 7 _ |a pmc:PMC6289141
|2 pmc
024 7 _ |a 0266-7061
|2 ISSN
024 7 _ |a 1367-4803
|2 ISSN
024 7 _ |a 1367-4811
|2 ISSN
024 7 _ |a 1460-2059
|2 ISSN
024 7 _ |a altmetric:43470808
|2 altmetric
037 _ _ |a DKFZ-2019-00190
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Lin, Hui-Yi
|b 0
245 _ _ |a AA9int: SNP interaction pattern search using non-hierarchical additive model set.
260 _ _ |a Oxford
|c 2018
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1695892460_13350
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The use of single nucleotide polymorphism (SNP) interactions to predict complex diseases is getting more attention during the past decade, but related statistical methods are still immature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate 45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computation burden. For large-scale studies, it is necessary to use a powerful and computation-efficient method. The objective of this study is to develop an evidence-based mini-version of SIPI as the screening tool or solitary use and to evaluate the impact of inheritance mode and model structure on detecting SNP-SNP interactions.We tested two candidate approaches: the Five-Full and AA9int method. The Five-Full approach is composed of the five full interaction models considering three inheritance modes (additive, dominant and recessive). The AA9int approach is composed of nine interaction models by considering non-hierarchical model structure and the additive mode. Our simulation results show that AA9int has similar statistical power compared to SIPI and is superior to the Five-Full approach, and the impact of the non-hierarchical model structure is greater than that of the inheritance mode in detecting SNP-SNP interactions. In summary, it is recommended that AA9int is a powerful tool to be used either alone or as the screening stage of a two-stage approach (AA9int+SIPI) for detecting SNP-SNP interactions in large-scale studies.The AA9int and parAA9int functions (standard and parallel computing version) are added in the SIPI R package, which is freely available at https://linhuiyi.github.io/LinHY_Software/.Supplementary data are available at Bioinformatics online.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Huang, Po-Yu
|b 1
700 1 _ |a Chen, Dung-Tsa
|b 2
700 1 _ |a Tung, Heng-Yuan
|b 3
700 1 _ |a Sellers, Thomas A
|b 4
700 1 _ |a Pow-Sang, Julio M
|b 5
700 1 _ |a Eeles, Rosalind
|b 6
700 1 _ |a Easton, Doug
|b 7
700 1 _ |a Kote-Jarai, Zsofia
|b 8
700 1 _ |a Amin Al Olama, Ali
|b 9
700 1 _ |a Benlloch, Sara
|b 10
700 1 _ |a Muir, Kenneth
|b 11
700 1 _ |a Giles, Graham G
|b 12
700 1 _ |a Wiklund, Fredrik
|b 13
700 1 _ |a Gronberg, Henrik
|b 14
700 1 _ |a Haiman, Christopher A
|b 15
700 1 _ |a Schleutker, Johanna
|b 16
700 1 _ |a Nordestgaard, Børge G
|b 17
700 1 _ |a Travis, Ruth C
|b 18
700 1 _ |a Hamdy, Freddie
|b 19
700 1 _ |a Neal, David E
|b 20
700 1 _ |a Pashayan, Nora
|b 21
700 1 _ |a Khaw, Kay-Tee
|b 22
700 1 _ |a Stanford, Janet L
|b 23
700 1 _ |a Blot, William J
|b 24
700 1 _ |a Thibodeau, Stephen N
|b 25
700 1 _ |a Maier, Christiane
|b 26
700 1 _ |a Kibel, Adam S
|b 27
700 1 _ |a Cybulski, Cezary
|b 28
700 1 _ |a Cannon-Albright, Lisa
|b 29
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 30
|u dkfz
700 1 _ |a Kaneva, Radka
|b 31
700 1 _ |a Batra, Jyotsna
|b 32
700 1 _ |a Teixeira, Manuel R
|b 33
700 1 _ |a Pandha, Hardev
|b 34
700 1 _ |a Lu, Yong-Jie
|b 35
700 1 _ |a Consortium, PRACTICAL
|b 36
|e Collaboration Author
700 1 _ |a Park, Jong Y
|b 37
773 _ _ |a 10.1093/bioinformatics/bty461
|g Vol. 34, no. 24
|0 PERI:(DE-600)1468345-3
|n 24
|p 4141-4150
|t Bioinformatics
|v 34
|y 2018
|x 1460-2059
909 C O |p VDB
|o oai:inrepo02.dkfz.de:142471
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 30
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOINFORMATICS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BIOINFORMATICS : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)G110-20160331
|k G110
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)G110-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21