000142509 001__ 142509
000142509 005__ 20240229111726.0
000142509 0247_ $$2doi$$a10.1016/j.ebiom.2018.10.066
000142509 0247_ $$2pmid$$apmid:30442561
000142509 0247_ $$2pmc$$apmc:PMC6306313
000142509 0247_ $$2altmetric$$aaltmetric:51125350
000142509 037__ $$aDKFZ-2019-00227
000142509 041__ $$aeng
000142509 082__ $$a610
000142509 1001_ $$aParmar, Priyanka$$b0
000142509 245__ $$aAssociation of maternal prenatal smoking GFI1-locus and cardio-metabolic phenotypes in 18,212 adults.
000142509 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000142509 3367_ $$2DRIVER$$aarticle
000142509 3367_ $$2DataCite$$aOutput Types/Journal article
000142509 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1550486192_680
000142509 3367_ $$2BibTeX$$aARTICLE
000142509 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142509 3367_ $$00$$2EndNote$$aJournal Article
000142509 520__ $$aDNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health.We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n = 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP).Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0·012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 × 10-7 < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 × 10-8 < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels.Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. FUND: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH.
000142509 536__ $$0G:(DE-HGF)POF3-323$$a323 - Metabolic Dysfunction as Risk Factor (POF3-323)$$cPOF3-323$$fPOF III$$x0
000142509 588__ $$aDataset connected to CrossRef, PubMed,
000142509 7001_ $$aLowry, Estelle$$b1
000142509 7001_ $$aCugliari, Giovanni$$b2
000142509 7001_ $$aSuderman, Matthew$$b3
000142509 7001_ $$aWilson, Rory$$b4
000142509 7001_ $$aKarhunen, Ville$$b5
000142509 7001_ $$aAndrew, Toby$$b6
000142509 7001_ $$aWiklund, Petri$$b7
000142509 7001_ $$aWielscher, Matthias$$b8
000142509 7001_ $$aGuarrera, Simonetta$$b9
000142509 7001_ $$aTeumer, Alexander$$b10
000142509 7001_ $$aLehne, Benjamin$$b11
000142509 7001_ $$aMilani, Lili$$b12
000142509 7001_ $$ade Klein, Niek$$b13
000142509 7001_ $$aMishra, Pashupati P$$b14
000142509 7001_ $$aMelton, Phillip E$$b15
000142509 7001_ $$aMandaviya, Pooja R$$b16
000142509 7001_ $$aKasela, Silva$$b17
000142509 7001_ $$aNano, Jana$$b18
000142509 7001_ $$aZhang, Weihua$$b19
000142509 7001_ $$aZhang, Yan$$b20
000142509 7001_ $$aUitterlinden, Andre G$$b21
000142509 7001_ $$aPeters, Annette$$b22
000142509 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b23$$udkfz
000142509 7001_ $$aGieger, Christian$$b24
000142509 7001_ $$aAnderson, Denise$$b25
000142509 7001_ $$aBoomsma, Dorret I$$b26
000142509 7001_ $$aGrabe, Hans J$$b27
000142509 7001_ $$aPanico, Salvatore$$b28
000142509 7001_ $$aVeldink, Jan H$$b29
000142509 7001_ $$avan Meurs, Joyce B J$$b30
000142509 7001_ $$avan den Berg, Leonard$$b31
000142509 7001_ $$aBeilin, Lawrence J$$b32
000142509 7001_ $$aFranke, Lude$$b33
000142509 7001_ $$aLoh, Marie$$b34
000142509 7001_ $$avan Greevenbroek, Marleen M J$$b35
000142509 7001_ $$aNauck, Matthias$$b36
000142509 7001_ $$aKähönen, Mika$$b37
000142509 7001_ $$aHurme, Mikko A$$b38
000142509 7001_ $$aRaitakari, Olli T$$b39
000142509 7001_ $$aFranco, Oscar H$$b40
000142509 7001_ $$aSlagboom, P Eline$$b41
000142509 7001_ $$avan der Harst, Pim$$b42
000142509 7001_ $$aKunze, Sonja$$b43
000142509 7001_ $$aFelix, Stephan B$$b44
000142509 7001_ $$aZhang, Tao$$b45
000142509 7001_ $$aChen, Wei$$b46
000142509 7001_ $$aMori, Trevor A$$b47
000142509 7001_ $$aBonnefond, Amelie$$b48
000142509 7001_ $$aHeijmans, Bastiaan T$$b49
000142509 7001_ $$aConsortium, BIOS$$b50$$eCollaboration Author
000142509 7001_ $$aMuka, Taulant$$b51
000142509 7001_ $$aKooner, Jaspal S$$b52
000142509 7001_ $$aFischer, Krista$$b53
000142509 7001_ $$aWaldenberger, Melanie$$b54
000142509 7001_ $$aFroguel, Philippe$$b55
000142509 7001_ $$aHuang, Rae-Chi$$b56
000142509 7001_ $$aLehtimäki, Terho$$b57
000142509 7001_ $$aRathmann, Wolfgang$$b58
000142509 7001_ $$aRelton, Caroline L$$b59
000142509 7001_ $$aMatullo, Giuseppe$$b60
000142509 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b61$$udkfz
000142509 7001_ $$aVerweij, Niek$$b62
000142509 7001_ $$aLi, Shengxu$$b63
000142509 7001_ $$aChambers, John C$$b64
000142509 7001_ $$aJärvelin, Marjo-Riitta$$b65
000142509 7001_ $$aSebert, Sylvain$$b66
000142509 7001_ $$aConsortium, GLOBAL Meth QTL$$b67$$eCollaboration Author
000142509 773__ $$0PERI:(DE-600)2799017-5$$a10.1016/j.ebiom.2018.10.066$$gVol. 38, p. 206 - 216$$p206 - 216$$tEBioMedicine$$v38$$x2352-3964$$y2018
000142509 909CO $$ooai:inrepo02.dkfz.de:142509$$pVDB
000142509 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b23$$kDKFZ
000142509 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b61$$kDKFZ
000142509 9131_ $$0G:(DE-HGF)POF3-323$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vMetabolic Dysfunction as Risk Factor$$x0
000142509 9141_ $$y2018
000142509 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEBIOMEDICINE : 2017
000142509 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142509 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142509 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142509 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000142509 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000142509 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000142509 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000142509 915__ $$0LIC:(DE-HGF)CCBYNCNDNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)$$bDOAJ
000142509 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142509 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142509 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142509 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEBIOMEDICINE : 2017
000142509 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000142509 9201_ $$0I:(DE-He78)G110-20160331$$kG110$$lPräventive Onkologie$$x1
000142509 980__ $$ajournal
000142509 980__ $$aVDB
000142509 980__ $$aI:(DE-He78)C070-20160331
000142509 980__ $$aI:(DE-He78)G110-20160331
000142509 980__ $$aUNRESTRICTED