001     142509
005     20240229111726.0
024 7 _ |a 10.1016/j.ebiom.2018.10.066
|2 doi
024 7 _ |a pmid:30442561
|2 pmid
024 7 _ |a pmc:PMC6306313
|2 pmc
024 7 _ |a altmetric:51125350
|2 altmetric
037 _ _ |a DKFZ-2019-00227
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Parmar, Priyanka
|b 0
245 _ _ |a Association of maternal prenatal smoking GFI1-locus and cardio-metabolic phenotypes in 18,212 adults.
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1550486192_680
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health.We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n = 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP).Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0·012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 × 10-7 < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 × 10-8 < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels.Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. FUND: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Lowry, Estelle
|b 1
700 1 _ |a Cugliari, Giovanni
|b 2
700 1 _ |a Suderman, Matthew
|b 3
700 1 _ |a Wilson, Rory
|b 4
700 1 _ |a Karhunen, Ville
|b 5
700 1 _ |a Andrew, Toby
|b 6
700 1 _ |a Wiklund, Petri
|b 7
700 1 _ |a Wielscher, Matthias
|b 8
700 1 _ |a Guarrera, Simonetta
|b 9
700 1 _ |a Teumer, Alexander
|b 10
700 1 _ |a Lehne, Benjamin
|b 11
700 1 _ |a Milani, Lili
|b 12
700 1 _ |a de Klein, Niek
|b 13
700 1 _ |a Mishra, Pashupati P
|b 14
700 1 _ |a Melton, Phillip E
|b 15
700 1 _ |a Mandaviya, Pooja R
|b 16
700 1 _ |a Kasela, Silva
|b 17
700 1 _ |a Nano, Jana
|b 18
700 1 _ |a Zhang, Weihua
|b 19
700 1 _ |a Zhang, Yan
|b 20
700 1 _ |a Uitterlinden, Andre G
|b 21
700 1 _ |a Peters, Annette
|b 22
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 23
|u dkfz
700 1 _ |a Gieger, Christian
|b 24
700 1 _ |a Anderson, Denise
|b 25
700 1 _ |a Boomsma, Dorret I
|b 26
700 1 _ |a Grabe, Hans J
|b 27
700 1 _ |a Panico, Salvatore
|b 28
700 1 _ |a Veldink, Jan H
|b 29
700 1 _ |a van Meurs, Joyce B J
|b 30
700 1 _ |a van den Berg, Leonard
|b 31
700 1 _ |a Beilin, Lawrence J
|b 32
700 1 _ |a Franke, Lude
|b 33
700 1 _ |a Loh, Marie
|b 34
700 1 _ |a van Greevenbroek, Marleen M J
|b 35
700 1 _ |a Nauck, Matthias
|b 36
700 1 _ |a Kähönen, Mika
|b 37
700 1 _ |a Hurme, Mikko A
|b 38
700 1 _ |a Raitakari, Olli T
|b 39
700 1 _ |a Franco, Oscar H
|b 40
700 1 _ |a Slagboom, P Eline
|b 41
700 1 _ |a van der Harst, Pim
|b 42
700 1 _ |a Kunze, Sonja
|b 43
700 1 _ |a Felix, Stephan B
|b 44
700 1 _ |a Zhang, Tao
|b 45
700 1 _ |a Chen, Wei
|b 46
700 1 _ |a Mori, Trevor A
|b 47
700 1 _ |a Bonnefond, Amelie
|b 48
700 1 _ |a Heijmans, Bastiaan T
|b 49
700 1 _ |a Consortium, BIOS
|b 50
|e Collaboration Author
700 1 _ |a Muka, Taulant
|b 51
700 1 _ |a Kooner, Jaspal S
|b 52
700 1 _ |a Fischer, Krista
|b 53
700 1 _ |a Waldenberger, Melanie
|b 54
700 1 _ |a Froguel, Philippe
|b 55
700 1 _ |a Huang, Rae-Chi
|b 56
700 1 _ |a Lehtimäki, Terho
|b 57
700 1 _ |a Rathmann, Wolfgang
|b 58
700 1 _ |a Relton, Caroline L
|b 59
700 1 _ |a Matullo, Giuseppe
|b 60
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 61
|u dkfz
700 1 _ |a Verweij, Niek
|b 62
700 1 _ |a Li, Shengxu
|b 63
700 1 _ |a Chambers, John C
|b 64
700 1 _ |a Järvelin, Marjo-Riitta
|b 65
700 1 _ |a Sebert, Sylvain
|b 66
700 1 _ |a Consortium, GLOBAL Meth QTL
|b 67
|e Collaboration Author
773 _ _ |a 10.1016/j.ebiom.2018.10.066
|g Vol. 38, p. 206 - 216
|0 PERI:(DE-600)2799017-5
|p 206 - 216
|t EBioMedicine
|v 38
|y 2018
|x 2352-3964
909 C O |p VDB
|o oai:inrepo02.dkfz.de:142509
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 61
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|2 G:(DE-HGF)POF3-300
|v Metabolic Dysfunction as Risk Factor
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EBIOMEDICINE : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)G110-20160331
|k G110
|l Präventive Onkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)G110-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21