000142861 001__ 142861
000142861 005__ 20240229112532.0
000142861 0247_ $$2doi$$a10.1186/s12859-018-2588-1
000142861 0247_ $$2pmid$$apmid:30651067
000142861 0247_ $$2pmc$$apmc:PMC6335810
000142861 0247_ $$2altmetric$$aaltmetric:45264327
000142861 037__ $$aDKFZ-2019-00491
000142861 041__ $$aeng
000142861 082__ $$a610
000142861 1001_ $$0P:(DE-He78)c0d7724ccc0d258281c66fd40653c978$$aDebus, Charlotte$$b0$$eFirst author$$udkfz
000142861 245__ $$aMITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging - design, implementation and application on the example of DCE-MRI.
000142861 260__ $$aHeidelberg$$bSpringer$$c2019
000142861 3367_ $$2DRIVER$$aarticle
000142861 3367_ $$2DataCite$$aOutput Types/Journal article
000142861 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575461953_7903
000142861 3367_ $$2BibTeX$$aARTICLE
000142861 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142861 3367_ $$00$$2EndNote$$aJournal Article
000142861 520__ $$aMany medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI)/computed tomography (CT), apparent diffusion coefficient calculations and intravoxel incoherent motion modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow.We present a framework for medical image fitting tasks that is included in the Medical Imaging Interaction Toolkit MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth.Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows.
000142861 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000142861 588__ $$aDataset connected to CrossRef, PubMed,
000142861 650_7 $$2NLM Chemicals$$aContrast Media
000142861 7001_ $$0P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d$$aFloca, Ralf$$b1$$udkfz
000142861 7001_ $$aIngrisch, Michael$$b2
000142861 7001_ $$0P:(DE-HGF)0$$aKompan, Ina$$b3
000142861 7001_ $$0P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aMaier-Hein, Klaus$$b4$$udkfz
000142861 7001_ $$0P:(DE-He78)360c5bc2b71a849e35aca747c041dda7$$aAbdollahi, Amir$$b5$$udkfz
000142861 7001_ $$0P:(DE-He78)a657bf15b4cbdf70baed30e14c19d9d3$$aNolden, Marco$$b6$$eLast author$$udkfz
000142861 773__ $$0PERI:(DE-600)2041484-5$$a10.1186/s12859-018-2588-1$$gVol. 20, no. 1, p. 31$$n1$$p31$$tBMC bioinformatics$$v20$$x1471-2105$$y2019
000142861 909CO $$ooai:inrepo02.dkfz.de:142861$$pVDB
000142861 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c0d7724ccc0d258281c66fd40653c978$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000142861 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000142861 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000142861 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000142861 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)360c5bc2b71a849e35aca747c041dda7$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000142861 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a657bf15b4cbdf70baed30e14c19d9d3$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000142861 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000142861 9141_ $$y2019
000142861 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC BIOINFORMATICS : 2017
000142861 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142861 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142861 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142861 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000142861 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000142861 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000142861 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000142861 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000142861 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000142861 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000142861 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142861 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142861 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142861 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000142861 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000142861 9201_ $$0I:(DE-He78)E230-20160331$$kE230$$lMedizinische Bildverarbeitung$$x0
000142861 9201_ $$0I:(DE-He78)E210-20160331$$kE210$$lTranslationale Radioonkologie$$x1
000142861 9201_ $$0I:(DE-He78)E071-20160331$$kE071$$lSoftwareentwicklung für Integrierte Diagnostik und Therapie(SIDT)$$x2
000142861 9201_ $$0I:(DE-He78)E132-20160331$$kE132$$lMedizinische Bildverarbeitung$$x3
000142861 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x4
000142861 980__ $$ajournal
000142861 980__ $$aVDB
000142861 980__ $$aI:(DE-He78)E230-20160331
000142861 980__ $$aI:(DE-He78)E210-20160331
000142861 980__ $$aI:(DE-He78)E071-20160331
000142861 980__ $$aI:(DE-He78)E132-20160331
000142861 980__ $$aI:(DE-He78)L101-20160331
000142861 980__ $$aUNRESTRICTED