001     142861
005     20240229112532.0
024 7 _ |a 10.1186/s12859-018-2588-1
|2 doi
024 7 _ |a pmid:30651067
|2 pmid
024 7 _ |a pmc:PMC6335810
|2 pmc
024 7 _ |a altmetric:45264327
|2 altmetric
037 _ _ |a DKFZ-2019-00491
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Debus, Charlotte
|0 P:(DE-He78)c0d7724ccc0d258281c66fd40653c978
|b 0
|e First author
|u dkfz
245 _ _ |a MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging - design, implementation and application on the example of DCE-MRI.
260 _ _ |a Heidelberg
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1575461953_7903
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI)/computed tomography (CT), apparent diffusion coefficient calculations and intravoxel incoherent motion modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow.We present a framework for medical image fitting tasks that is included in the Medical Imaging Interaction Toolkit MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth.Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Contrast Media
|2 NLM Chemicals
700 1 _ |a Floca, Ralf
|0 P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d
|b 1
|u dkfz
700 1 _ |a Ingrisch, Michael
|b 2
700 1 _ |a Kompan, Ina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 4
|u dkfz
700 1 _ |a Abdollahi, Amir
|0 P:(DE-He78)360c5bc2b71a849e35aca747c041dda7
|b 5
|u dkfz
700 1 _ |a Nolden, Marco
|0 P:(DE-He78)a657bf15b4cbdf70baed30e14c19d9d3
|b 6
|e Last author
|u dkfz
773 _ _ |a 10.1186/s12859-018-2588-1
|g Vol. 20, no. 1, p. 31
|0 PERI:(DE-600)2041484-5
|n 1
|p 31
|t BMC bioinformatics
|v 20
|y 2019
|x 1471-2105
909 C O |p VDB
|o oai:inrepo02.dkfz.de:142861
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)c0d7724ccc0d258281c66fd40653c978
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)360c5bc2b71a849e35aca747c041dda7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)a657bf15b4cbdf70baed30e14c19d9d3
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC BIOINFORMATICS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E210-20160331
|k E210
|l Translationale Radioonkologie
|x 1
920 1 _ |0 I:(DE-He78)E071-20160331
|k E071
|l Softwareentwicklung für Integrierte Diagnostik und Therapie(SIDT)
|x 2
920 1 _ |0 I:(DE-He78)E132-20160331
|k E132
|l Medizinische Bildverarbeitung
|x 3
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E210-20160331
980 _ _ |a I:(DE-He78)E071-20160331
980 _ _ |a I:(DE-He78)E132-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21