000142862 001__ 142862
000142862 005__ 20240229112532.0
000142862 0247_ $$2doi$$a10.1002/ijc.31939
000142862 0247_ $$2pmid$$apmid:30350867
000142862 0247_ $$2ISSN$$a0020-7136
000142862 0247_ $$2ISSN$$a1097-0215
000142862 0247_ $$2altmetric$$aaltmetric:72900255
000142862 037__ $$aDKFZ-2019-00492
000142862 041__ $$aeng
000142862 082__ $$a610
000142862 1001_ $$0P:(DE-He78)edbf2a3cf37ee2f675461295e1f84529$$aDietz, Steffen$$b0$$eFirst author$$udkfz
000142862 245__ $$aGlobal DNA methylation reflects spatial heterogeneity and molecular evolution of lung adenocarcinomas.
000142862 260__ $$aBognor Regis$$bWiley-Liss$$c2019
000142862 3367_ $$2DRIVER$$aarticle
000142862 3367_ $$2DataCite$$aOutput Types/Journal article
000142862 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554366746_21267
000142862 3367_ $$2BibTeX$$aARTICLE
000142862 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142862 3367_ $$00$$2EndNote$$aJournal Article
000142862 520__ $$aLung adenocarcinoma (ADC) is the most prevalent subtype of lung cancer and characterized by considerable morphological and mutational heterogeneity. However, little is known about the epigenomic intratumor variability between spatially separated histological growth patterns of ADC. In order to reconstruct the clonal evolution of histomorphological patterns, we performed global DNA methylation profiling of 27 primary tumor regions, seven matched normal tissues and six lymph node metastases from seven ADC cases. Additionally, we investigated the methylation data from 369 samples of the TCGA ADC cohort. All regions showed varying degrees of methylation changes between segments of different, but also of the same growth patterns. Similarly, copy number variations were seen between spatially distinct segments of each patient. Hierarchical clustering of promoter methylation revealed extensive heterogeneity within and between the cases. Intratumor DNA methylation heterogeneity demonstrated a branched clonal evolution of ADC regions driven by genomic instability with subclonal copy number changes. Notably, methylation profiles within tumors were not more similar to each other than to those from other individuals. In two cases, different tumor regions of the same individuals were represented in distant clusters of the TCGA cohort, illustrating the extensive epigenomic intratumor heterogeneity of ADCs. We found no evidence for the lymph node metastases to be derived from a common growth pattern. Instead, they had evolved early and separately from a particular pattern in each primary tumor. Our results suggest that extensive variation of epigenomic features contributes to the molecular and phenotypic heterogeneity of primary ADCs and lymph node metastases.
000142862 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000142862 588__ $$aDataset connected to CrossRef, PubMed,
000142862 7001_ $$aLifshitz, Aviezer$$b1
000142862 7001_ $$00000-0001-8187-3281$$aKazdal, Daniel$$b2
000142862 7001_ $$0P:(DE-HGF)0$$aHarms, Alexander$$b3
000142862 7001_ $$00000-0003-2550-3563$$aEndris, Volker$$b4
000142862 7001_ $$aWinter, Hauke$$b5
000142862 7001_ $$00000-0003-1001-103X$$aStenzinger, Albrecht$$b6
000142862 7001_ $$aWarth, Arne$$b7
000142862 7001_ $$0P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aSill, Martin$$b8$$udkfz
000142862 7001_ $$aTanay, Amos$$b9
000142862 7001_ $$0P:(DE-He78)7483734fd8ab316391aa604c95f0e98a$$aSültmann, Holger$$b10$$eLast author$$udkfz
000142862 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.31939$$gVol. 144, no. 5, p. 1061 - 1072$$n5$$p1061 - 1072$$tInternational journal of cancer$$v144$$x0020-7136$$y2019
000142862 909CO $$ooai:inrepo02.dkfz.de:142862$$pVDB
000142862 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)edbf2a3cf37ee2f675461295e1f84529$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000142862 9101_ $$0I:(DE-588b)2036810-0$$60000-0001-8187-3281$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000142862 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000142862 9101_ $$0I:(DE-588b)2036810-0$$60000-0003-1001-103X$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000142862 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000142862 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7483734fd8ab316391aa604c95f0e98a$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000142862 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000142862 9141_ $$y2019
000142862 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000142862 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142862 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142862 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142862 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2017
000142862 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142862 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000142862 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142862 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142862 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000142862 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000142862 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2017
000142862 9201_ $$0I:(DE-He78)B063-20160331$$kB063$$lKrebsgenomforschung$$x0
000142862 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x1
000142862 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000142862 980__ $$ajournal
000142862 980__ $$aVDB
000142862 980__ $$aI:(DE-He78)B063-20160331
000142862 980__ $$aI:(DE-He78)B062-20160331
000142862 980__ $$aI:(DE-He78)L101-20160331
000142862 980__ $$aUNRESTRICTED