000142868 001__ 142868
000142868 005__ 20240229112532.0
000142868 0247_ $$2doi$$a10.1136/gutjnl-2017-314711
000142868 0247_ $$2pmid$$apmid:29101262
000142868 0247_ $$2ISSN$$a0017-5749
000142868 0247_ $$2ISSN$$a1468-3288
000142868 037__ $$aDKFZ-2019-00498
000142868 041__ $$aeng
000142868 082__ $$a610
000142868 1001_ $$0P:(DE-HGF)0$$aGündert, Melanie$$b0$$eFirst author
000142868 245__ $$aGenome-wide DNA methylation analysis reveals a prognostic classifier for non-metastatic colorectal cancer (ProMCol classifier).
000142868 260__ $$aLondon$$bBMJ Publishing Group$$c2019
000142868 3367_ $$2DRIVER$$aarticle
000142868 3367_ $$2DataCite$$aOutput Types/Journal article
000142868 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661345629_6884
000142868 3367_ $$2BibTeX$$aARTICLE
000142868 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142868 3367_ $$00$$2EndNote$$aJournal Article
000142868 520__ $$aPathological staging used for the prediction of patient survival in colorectal cancer (CRC) provides only limited information.Here, a genome-wide study of DNA methylation was conducted for two cohorts of patients with non-metastatic CRC (screening cohort (n=572) and validation cohort (n=274)). A variable screening for prognostic CpG sites was performed in the screening cohort using marginal testing based on a Cox model and subsequent adjustment of the p-values via independent hypothesis weighting using the methylation difference between 34 pairs of tumour and normal mucosa tissue as auxiliary covariate. From the 1000 CpG sites with the smallest adjusted p-value, 20 CpG sites with the smallest Brier score for overall survival (OS) were selected. Applying principal component analysis, we derived a prognostic methylation-based classifier for patients with non-metastatic CRC (ProMCol classifier).This classifier was associated with OS in the screening (HR 0.51, 95% CI 0.41 to 0.63, p=6.2E-10) and the validation cohort (HR 0.61, 95% CI 0.45 to 0.82, p=0.001). The independent validation of the ProMCol classifier revealed a reduction of the prediction error for 3-year OS from 0.127, calculated only with standard clinical variables, to 0.120 combining the clinical variables with the classifier and for 4-year OS from 0.153 to 0.140. All results were confirmed for disease-specific survival.The ProMCol classifier could improve the prognostic accuracy for patients with non-metastatic CRC.
000142868 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000142868 588__ $$aDataset connected to CrossRef, PubMed,
000142868 7001_ $$0P:(DE-He78)92820b4867c955a04f642707ecf35b40$$aEdelmann, Dominic$$b1$$udkfz
000142868 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b2$$udkfz
000142868 7001_ $$0P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09$$aJansen, Lina$$b3$$udkfz
000142868 7001_ $$0P:(DE-He78)72d22b0cfac00f2fc21ceb7236804af0$$aJia, Min$$b4$$udkfz
000142868 7001_ $$0P:(DE-He78)6c2a1ea8cce3580fe2d1c1df120a92b9$$aWalter, Viola$$b5$$udkfz
000142868 7001_ $$aKnebel, Phillip$$b6
000142868 7001_ $$aHerpel, Esther$$b7
000142868 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b8$$udkfz
000142868 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b9$$udkfz
000142868 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b10$$udkfz
000142868 7001_ $$0P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf$$aBurwinkel, Barbara$$b11$$eLast author$$udkfz
000142868 773__ $$0PERI:(DE-600)1492637-4$$a10.1136/gutjnl-2017-314711$$gVol. 68, no. 1, p. 101 - 110$$n1$$p101 - 110$$tGut$$v68$$x1468-3288$$y2019
000142868 909CO $$ooai:inrepo02.dkfz.de:142868$$pVDB
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92820b4867c955a04f642707ecf35b40$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)72d22b0cfac00f2fc21ceb7236804af0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c2a1ea8cce3580fe2d1c1df120a92b9$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000142868 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000142868 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000142868 9141_ $$y2019
000142868 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz
000142868 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000142868 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGUT : 2017
000142868 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142868 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142868 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142868 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000142868 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000142868 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000142868 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142868 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000142868 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142868 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142868 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000142868 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000142868 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000142868 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bGUT : 2017
000142868 9201_ $$0I:(DE-He78)C080-20160331$$kC080$$lMolekulare Epidemiologie$$x0
000142868 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000142868 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x2
000142868 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x3
000142868 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x4
000142868 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x5
000142868 980__ $$ajournal
000142868 980__ $$aVDB
000142868 980__ $$aI:(DE-He78)C080-20160331
000142868 980__ $$aI:(DE-He78)C060-20160331
000142868 980__ $$aI:(DE-He78)C070-20160331
000142868 980__ $$aI:(DE-He78)C020-20160331
000142868 980__ $$aI:(DE-He78)C120-20160331
000142868 980__ $$aI:(DE-He78)L101-20160331
000142868 980__ $$aUNRESTRICTED