001     142882
005     20240229121828.0
024 7 _ |a 10.1093/gerona/gly053
|2 doi
024 7 _ |a pmid:29562321
|2 pmid
024 7 _ |a 1079-5006
|2 ISSN
024 7 _ |a 1758-535X
|2 ISSN
024 7 _ |a altmetric:34621691
|2 altmetric
037 _ _ |a DKFZ-2019-00512
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Raina, Parminder
|b 0
245 _ _ |a The Combined Effect of Cancer and Cardiometabolic Conditions on the Mortality Burden in Older Adults.
260 _ _ |a Oxford [u.a.]
|c 2019
|b Oxford Univ. Pr.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636555506_2157
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The number of older people living with cancer and cardiometabolic conditions is increasing, but little is known about how specific combinations of these conditions impact mortality.A total of 22,692 participants aged 65 years and older from four international cohorts were followed-up for mortality for an average of 10 years (8,596 deaths). Data were harmonized across cohorts and mutually exclusive groups of disease combinations were created for cancer, myocardial infarction (MI), stroke, and diabetes at baseline. Cox proportional hazards models for all-cause mortality were used to estimate the age- and sex-adjusted hazard ratio and rate advancement period (RAP) (in years).At baseline, 23.6% (n = 5,116) of participants reported having one condition and 4.2% (n = 955) had two or more conditions. Data from all studies combined showed that the RAP increased with each additional condition. Diabetes advanced the rate of dying by the most years (5.26 years; 95% confidence interval [CI], 4.53-6.00), but the effect of any single condition was smaller than the effect of disease combinations. Some combinations had a significantly greater impact on the period by which the rate of death was advanced than others with the same number of conditions, for example, 10.9 years (95% CI, 9.4-12.6) for MI and diabetes versus 6.4 years (95% CI, 4.3-8.5) for cancer and diabetes.Combinations of cancer and cardiometabolic conditions accelerate mortality rates in older adults differently. Although most studies investigating mortality associated with multimorbidity used disease counts, these provide little guidance for managing complex patients as they age.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Gilsing, Anne
|b 1
700 1 _ |a Freisling, Heinz
|b 2
700 1 _ |a van den Heuvel, Edwin
|b 3
700 1 _ |a Sohel, Nazmul
|b 4
700 1 _ |a Jenab, Mazda
|b 5
700 1 _ |a Ferrari, Pietro
|b 6
700 1 _ |a Tjønneland, Anne
|b 7
700 1 _ |a Benetou, Vassiliki
|b 8
700 1 _ |a Picavet, Susan
|b 9
700 1 _ |a Eriksson, Sture
|b 10
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 11
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 12
|u dkfz
700 1 _ |a Saum, Kai-Uwe
|0 P:(DE-He78)97343bbd9545a4b87574e74329dabfd1
|b 13
|u dkfz
700 1 _ |a Perna, Laura
|0 P:(DE-He78)d9d72431035d8535d1b65ce9a01c2f60
|b 14
|u dkfz
700 1 _ |a Wilsgaard, Tom
|b 15
700 1 _ |a Trichopoulou, Antonia
|b 16
700 1 _ |a Boffetta, Paolo
|b 17
700 1 _ |a Griffith, Lauren E
|b 18
773 _ _ |a 10.1093/gerona/gly053
|g Vol. 74, no. 3, p. 366 - 372
|0 PERI:(DE-600)2043927-1
|n 3
|p 366 - 372
|t The journals of gerontology / A Biological sciences, medical sciences Series A
|v 74
|y 2019
|x 1758-535X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:142882
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)97343bbd9545a4b87574e74329dabfd1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)d9d72431035d8535d1b65ce9a01c2f60
913 1 _ |a DE-HGF
|b Gesundheit
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Metabolic Dysfunction as Risk Factor
|x 0
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GERONTOL A-BIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21