001     142909
005     20240229121828.0
024 7 _ |a 10.3892/etm.2018.7039
|2 doi
024 7 _ |a pmid:30651888
|2 pmid
024 7 _ |a pmc:PMC6307445
|2 pmc
024 7 _ |a 1792-0981
|2 ISSN
024 7 _ |a 1792-1015
|2 ISSN
037 _ _ |a DKFZ-2019-00537
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Jobst, Bertram J
|b 0
245 _ _ |a GOLD stage predicts thoracic aortic calcifications in patients with COPD.
260 _ _ |a Athens
|c 2019
|b Spandidos Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582281923_27336
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Although some of the associations between chronic obstructive pulmonary disease (COPD) and atherosclerosis are based on shared risk factors such as smoking, recent epidemiological evidence suggests that COPD is a risk factor for vascular disease due to systemic inflammation. The present study assessed the hypothesis that disease severity (as expressed by the GOLD stage) independently predicts the extent of vascular calcifications. A total of 160 smokers diagnosed with COPD (GOLD I-IV, 40 subjects of each GOLD stage) and 40 smokers at risk (GOLD 0; median age of 60 years old; Q1:56;Q3:65; 135 males and 65 females) underwent non-contrast, non-electrocardiography synchronized chest computerised tomography. The volume of thoracic aortic calcifications was quantified semi-automatically within a region from T1 through T12. Multiparametric associations with GOLD stage, smoking history, sex, age, body mass index and emphysema index were evaluated using generalized linear regression analysis. Thoracic aortic calcifications were highly prevalent in this cohort (187/200 subjects, 709 (Q1:109;Q3:2163) mm3). Analysis of variance on ranks demonstrated a significant difference in calcium between different GOLD-stages as well as patients at risk of COPD (F=36.8, P<0.001). In the multivariable analysis, GOLD-stages were indicated to be predictive of thoracic aortic calcifications (P≤0.0033) besides age (P<0.0001), while age appeared to be the strongest predictor. Other variables were not statistically linked to thoracic aortic calcifications in the multivariable model. COPD severity, as expressed by the GOLD-stage, is a significant predictor of thoracic aortic calcifications, independent of covariates such as age or tobacco consumption.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Owsijewitsch, Michael
|b 1
700 1 _ |a Kauczor, Hans-Ulrich
|b 2
700 1 _ |a Biederer, Jürgen
|b 3
700 1 _ |a Ley, Sebastian
|b 4
700 1 _ |a Becker, Nikolaus
|0 P:(DE-He78)1573258b58c33f1922ca9719d0c8c4ab
|b 5
|u dkfz
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 6
|u dkfz
700 1 _ |a Delorme, Stefan
|0 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
|b 7
|u dkfz
700 1 _ |a Heussel, Claus Peter
|b 8
700 1 _ |a Puderbach, Michael
|b 9
700 1 _ |a Wielpütz, Mark O
|b 10
700 1 _ |a Ley-Zaporozhan, Julia
|b 11
773 _ _ |a 10.3892/etm.2018.7039
|g Vol. 17, no. 1
|0 PERI:(DE-600)2683844-8
|n 1
|p 967-973
|t Experimental and Therapeutic Medicine
|v 17
|y 2019
|x 1792-1015
909 C O |p VDB
|o oai:inrepo02.dkfz.de:142909
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)1573258b58c33f1922ca9719d0c8c4ab
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
913 1 _ |a DE-HGF
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|2 G:(DE-HGF)POF3-300
|v Metabolic Dysfunction as Risk Factor
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EXP THER MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21