001     142928
005     20240303003700.0
024 7 _ |a 10.1186/s12879-019-3691-2
|2 doi
024 7 _ |a pmid:30700258
|2 pmid
024 7 _ |a pmc:PMC6354372
|2 pmc
024 7 _ |a altmetric:60555634
|2 altmetric
037 _ _ |a DKFZ-2019-00556
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Caputo, Mahrrouz
|b 0
245 _ _ |a Herpes zoster incidence in Germany - an indirect validation study for self-reported disease data from pretest studies of the population-based German National Cohort.
260 _ _ |a Heidelberg
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1551359767_7024
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Until now, herpes zoster (HZ)-related disease burden in Germany has been estimated based on health insurance data and clinical findings. However, the validity of self-reported HZ is unclear. This study investigated the validity of self-reported herpes zoster (HZ) and its complication postherpetic neuralgia (PHN) using data from the pretest studies of the German National Cohort (GNC) in comparison with estimates based on health insurance data.Data of 4751 participants aged between 20 and 69 years from two pretest studies of the GNC carried out in 2011 and 2012 were used. Based on self-reports of physician-diagnosed HZ and PHN, age- and sex-specific HZ incidence rates and PHN proportions were estimated. For comparison, estimates based on statutory health insurance data from the German population were considered.Eleven percent (95%-CI, 10.4 to 12.3, n = 539) of the participants reported at least one HZ episode in their lifetime. Our estimated age-specific HZ incidence rates were lower than previous estimates based on statutory health insurance data. The PHN proportion in participants older than 50 years was 5.9% (1.9 to 13.9%), which was in line with estimates based on health insurance data.As age- and sex-specific patterns were comparable with that in health insurance data, self-reported diagnosis of HZ seems to be a valid instrument for overall disease trends. Possible reasons for observed differences in incidence rates are recall bias in self-reported data or overestimation in health insurance data.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Horn, Johannes
|b 1
700 1 _ |a Karch, André
|b 2
700 1 _ |a Akmatov, Manas K
|b 3
700 1 _ |a Becher, Heiko
|b 4
700 1 _ |a Braun, Bettina
|b 5
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 6
|u dkfz
700 1 _ |a Castell, Stefanie
|b 7
700 1 _ |a Fischer, Beate
|b 8
700 1 _ |a Giani, Guido
|b 9
700 1 _ |a Günther, Kathrin
|b 10
700 1 _ |a Hoffmann, Barbara
|b 11
700 1 _ |a Jöckel, Karl-Heinz
|b 12
700 1 _ |a Keil, Thomas
|b 13
700 1 _ |a Klüppelholz, Birgit
|b 14
700 1 _ |a Krist, Lilian
|b 15
700 1 _ |a Leitzmann, Michael F
|b 16
700 1 _ |a Lieb, Wolfgang
|b 17
700 1 _ |a Linseisen, Jakob
|b 18
700 1 _ |a Meisinger, Christa
|b 19
700 1 _ |a Moebus, Susanne
|b 20
700 1 _ |a Obi, Nadia
|b 21
700 1 _ |a Pischon, Tobias
|b 22
700 1 _ |a Schipf, Sabine
|b 23
700 1 _ |a Schmidt, Börge
|b 24
700 1 _ |a Sievers, Claudia
|b 25
700 1 _ |a Steinbrecher, Astrid
|b 26
700 1 _ |a Völzke, Henry
|b 27
700 1 _ |a Mikolajczyk, Rafael
|b 28
773 _ _ |a 10.1186/s12879-019-3691-2
|g Vol. 19, no. 1, p. 99
|0 PERI:(DE-600)2041550-3
|n 1
|p 99
|t BMC infectious diseases
|v 19
|y 2019
|x 1471-2334
909 C O |o oai:inrepo02.dkfz.de:142928
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC INFECT DIS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21