000142944 001__ 142944
000142944 005__ 20240229112536.0
000142944 0247_ $$2doi$$a10.1186/s12859-019-2655-2
000142944 0247_ $$2pmid$$apmid:30704404
000142944 0247_ $$2pmc$$apmc:PMC6357397
000142944 0247_ $$2altmetric$$aaltmetric:54796168
000142944 037__ $$aDKFZ-2019-00572
000142944 041__ $$aeng
000142944 082__ $$a610
000142944 1001_ $$0P:(DE-He78)34b3639de467b2c700920d7cbc3d2110$$aOkonechnikov, Konstantin$$b0$$eFirst author$$udkfz
000142944 245__ $$aInTAD: chromosome conformation guided analysis of enhancer target genes.
000142944 260__ $$aHeidelberg$$bSpringer$$c2019
000142944 3367_ $$2DRIVER$$aarticle
000142944 3367_ $$2DataCite$$aOutput Types/Journal article
000142944 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1551690689_4203
000142944 3367_ $$2BibTeX$$aARTICLE
000142944 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000142944 3367_ $$00$$2EndNote$$aJournal Article
000142944 520__ $$aHigh-throughput technologies for analyzing chromosome conformation at a genome scale have revealed that chromatin is organized in topologically associated domains (TADs). While TADs are relatively stable across cell types, intra-TAD activities are cell type specific. Epigenetic profiling of different tissues and cell-types has identified a large number of non-coding epigenetic regulatory elements (enhancers) that can be located far away from coding genes. Linear proximity is a commonly chosen criterion for associating enhancers with their potential target genes. While enhancers frequently regulate the closest gene, unambiguous identification of enhancer regulated genes remains to be a challenge in the absence of sample matched chromosome conformation data.To associate enhancers with their target genes, we have previously developed and applied a method that tests for significant correlations between enhancer and gene expressions across a cohort of samples. To limit the number of tests, we constrain this analysis to gene-enhancer pairs embedded in the same TAD, where information on TAD boundaries is borrowed from publicly available chromosome conformation capturing (Hi-C) data. We have now implemented this method as an R Bioconductor package InTAD and verified the software package by reanalyzing available enhancer and gene expression data derived from ependymoma brain tumors.The open-source package InTAD is an easy-to-use software tool for identifying proximal and distal enhancer target genes by leveraging information on correlated expression of enhancers and genes that are located in the same TAD. InTAD can be applied to any heterogeneous cohort of samples analyzed by a combination of gene expression and epigenetic profiling techniques and integrates either public or custom information of TAD boundaries.
000142944 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000142944 588__ $$aDataset connected to CrossRef, PubMed,
000142944 7001_ $$0P:(DE-He78)df8660bc5aba525f7fb6dba4aac15c1c$$aErkek, Serap$$b1$$udkfz
000142944 7001_ $$aKorbel, Jan O$$b2
000142944 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b3$$udkfz
000142944 7001_ $$aChavez, Lukas$$b4
000142944 773__ $$0PERI:(DE-600)2041484-5$$a10.1186/s12859-019-2655-2$$gVol. 20, no. 1, p. 60$$n1$$p60$$tBMC bioinformatics$$v20$$x1471-2105$$y2019
000142944 909CO $$ooai:inrepo02.dkfz.de:142944$$pVDB
000142944 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)34b3639de467b2c700920d7cbc3d2110$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000142944 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)df8660bc5aba525f7fb6dba4aac15c1c$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000142944 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000142944 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000142944 9141_ $$y2019
000142944 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC BIOINFORMATICS : 2017
000142944 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000142944 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000142944 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000142944 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000142944 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000142944 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000142944 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000142944 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000142944 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000142944 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000142944 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000142944 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000142944 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000142944 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000142944 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000142944 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000142944 980__ $$ajournal
000142944 980__ $$aVDB
000142944 980__ $$aI:(DE-He78)B062-20160331
000142944 980__ $$aUNRESTRICTED