001     142944
005     20240229112536.0
024 7 _ |a 10.1186/s12859-019-2655-2
|2 doi
024 7 _ |a pmid:30704404
|2 pmid
024 7 _ |a pmc:PMC6357397
|2 pmc
024 7 _ |a altmetric:54796168
|2 altmetric
037 _ _ |a DKFZ-2019-00572
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Okonechnikov, Konstantin
|0 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
|b 0
|e First author
|u dkfz
245 _ _ |a InTAD: chromosome conformation guided analysis of enhancer target genes.
260 _ _ |a Heidelberg
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1551690689_4203
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-throughput technologies for analyzing chromosome conformation at a genome scale have revealed that chromatin is organized in topologically associated domains (TADs). While TADs are relatively stable across cell types, intra-TAD activities are cell type specific. Epigenetic profiling of different tissues and cell-types has identified a large number of non-coding epigenetic regulatory elements (enhancers) that can be located far away from coding genes. Linear proximity is a commonly chosen criterion for associating enhancers with their potential target genes. While enhancers frequently regulate the closest gene, unambiguous identification of enhancer regulated genes remains to be a challenge in the absence of sample matched chromosome conformation data.To associate enhancers with their target genes, we have previously developed and applied a method that tests for significant correlations between enhancer and gene expressions across a cohort of samples. To limit the number of tests, we constrain this analysis to gene-enhancer pairs embedded in the same TAD, where information on TAD boundaries is borrowed from publicly available chromosome conformation capturing (Hi-C) data. We have now implemented this method as an R Bioconductor package InTAD and verified the software package by reanalyzing available enhancer and gene expression data derived from ependymoma brain tumors.The open-source package InTAD is an easy-to-use software tool for identifying proximal and distal enhancer target genes by leveraging information on correlated expression of enhancers and genes that are located in the same TAD. InTAD can be applied to any heterogeneous cohort of samples analyzed by a combination of gene expression and epigenetic profiling techniques and integrates either public or custom information of TAD boundaries.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Erkek, Serap
|0 P:(DE-He78)df8660bc5aba525f7fb6dba4aac15c1c
|b 1
|u dkfz
700 1 _ |a Korbel, Jan O
|b 2
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 3
|u dkfz
700 1 _ |a Chavez, Lukas
|b 4
773 _ _ |a 10.1186/s12859-019-2655-2
|g Vol. 20, no. 1, p. 60
|0 PERI:(DE-600)2041484-5
|n 1
|p 60
|t BMC bioinformatics
|v 20
|y 2019
|x 1471-2105
909 C O |o oai:inrepo02.dkfz.de:142944
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)df8660bc5aba525f7fb6dba4aac15c1c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC BIOINFORMATICS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21