000143168 001__ 143168 000143168 005__ 20240229112542.0 000143168 0247_ $$2doi$$a10.1186/s12916-019-1304-y 000143168 0247_ $$2pmid$$apmid:30905320 000143168 0247_ $$2altmetric$$aaltmetric:57686350 000143168 037__ $$aDKFZ-2019-00767 000143168 041__ $$aeng 000143168 082__ $$a610 000143168 1001_ $$0P:(DE-He78)448ff49e51672d79b4747339ac15c898$$aHuang, Lei$$b0$$eFirst author$$udkfz 000143168 245__ $$aDevelopment and validation of a prognostic model to predict the prognosis of patients who underwent chemotherapy and resection of pancreatic adenocarcinoma: a large international population-based cohort study.3 000143168 260__ $$aHeidelberg [u.a.]$$bSpringer$$c2019 000143168 3367_ $$2DRIVER$$aarticle 000143168 3367_ $$2DataCite$$aOutput Types/Journal article 000143168 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636109574_8518 000143168 3367_ $$2BibTeX$$aARTICLE 000143168 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000143168 3367_ $$00$$2EndNote$$aJournal Article 000143168 520__ $$aPancreatic cancer (PaC) remains extremely lethal worldwide even after resection. PaC resection rates are low, making prognostic studies in resected PaC difficult. This large international population-based study aimed at exploring factors associated with survival in patients with resected TNM stage I-II PaC receiving chemotherapy and at developing and internationally validating a survival-predicting model.Data of stage I-II PaC patients resected and receiving chemotherapy in 2003-2014 were obtained from the national cancer registries of Belgium, the Netherlands, Slovenia, and Norway, and the US Surveillance, Epidemiology, and End Results (SEER)-18 Program. Multivariable Cox proportional hazards models were constructed to investigate the associations of patient and tumor characteristics with overall survival, and analysis was performed in each country respectively without pooling. Prognostic factors remaining after backward selection in SEER-18 were used to build a nomogram, which was subjected to bootstrap internal validation and external validation using the European datasets.A total of 11,837 resected PaC patients were analyzed, with median survival time of 18-23 months and 3-year survival rates of 21-31%. In the main analysis, patient age, tumor T stage, N stage, and differentiation were associated with survival across most countries, with country-specific association patterns and strengths. However, tumor location was mostly not significantly associated with survival. Resection margin, hospital type, tumor size, positive and harvested lymph node number, lymph node ratio, and comorbidity number were associated with survival in certain countries where the information was available. A median survival time- and 1-, 2-, 3-, and 5-year survival probability-predictive nomogram incorporating the backward-selected variables in the main analysis was established. It fits each European national cohort similarly well. Calibration curves showed very good agreement between nomogram-prediction and actual observation. The concordance index of the nomogram (0.60) was significantly higher than that of the T and N stage-based model (0.56) for predicting survival.In these large international population-based cohorts, patients with resected PaC receiving chemotherapy have distinct characteristics independently associated with survival, with country-specific patterns and strengths. A robust benchmark population-based survival-predicting model is established and internationally validated. Like previous models predicting survival in resected PaC, our nomogram performs modestly. 000143168 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0 000143168 588__ $$aDataset connected to CrossRef, PubMed, 000143168 7001_ $$0P:(DE-He78)48988e4552476bf82978f0e1ac8a4cf0$$aBalavarca, Yesilda$$b1$$udkfz 000143168 7001_ $$avan der Geest, Lydia$$b2 000143168 7001_ $$aLemmens, Valery$$b3 000143168 7001_ $$aVan Eycken, Liesbet$$b4 000143168 7001_ $$aDe Schutter, Harlinde$$b5 000143168 7001_ $$aJohannesen, Tom B$$b6 000143168 7001_ $$aZadnik, Vesna$$b7 000143168 7001_ $$aPrimic-Žakelj, Maja$$b8 000143168 7001_ $$aMägi, Margit$$b9 000143168 7001_ $$aGrützmann, Robert$$b10 000143168 7001_ $$aBesselink, Marc G$$b11 000143168 7001_ $$0P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86$$aSchrotz-King, Petra$$b12$$udkfz 000143168 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b13$$udkfz 000143168 7001_ $$0P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09$$aJansen, Lina$$b14$$eLast author$$udkfz 000143168 773__ $$0PERI:(DE-600)2131669-7$$a10.1186/s12916-019-1304-y$$gVol. 17, no. 1, p. 66$$n1$$p66$$tBMC medicine$$v17$$x1741-7015$$y2019 000143168 909CO $$ooai:inrepo02.dkfz.de:143168$$pVDB 000143168 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)448ff49e51672d79b4747339ac15c898$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000143168 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)48988e4552476bf82978f0e1ac8a4cf0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000143168 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ 000143168 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ 000143168 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ 000143168 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0 000143168 9141_ $$y2019 000143168 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC MED : 2017 000143168 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000143168 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000143168 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000143168 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000143168 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000143168 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000143168 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review 000143168 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ 000143168 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000143168 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000143168 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000143168 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000143168 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000143168 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000143168 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000143168 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000143168 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBMC MED : 2017 000143168 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0 000143168 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1 000143168 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2 000143168 980__ $$ajournal 000143168 980__ $$aVDB 000143168 980__ $$aI:(DE-He78)C070-20160331 000143168 980__ $$aI:(DE-He78)C120-20160331 000143168 980__ $$aI:(DE-He78)L101-20160331 000143168 980__ $$aUNRESTRICTED