000143203 001__ 143203
000143203 005__ 20240229112544.0
000143203 0247_ $$2doi$$a10.1088/1361-6560/aafa46
000143203 0247_ $$2pmid$$apmid:30572319
000143203 0247_ $$2ISSN$$a0031-9155
000143203 0247_ $$2ISSN$$a1361-6560
000143203 0247_ $$2altmetric$$aaltmetric:56679520
000143203 037__ $$aDKFZ-2019-00802
000143203 041__ $$aeng
000143203 082__ $$a530
000143203 1001_ $$0P:(DE-He78)65bcbf04c43c51ff8debd43f030962b5$$aArico, Giulia$$b0$$eFirst author$$udkfz
000143203 245__ $$aInvestigation of single carbon ion fragmentation in water and PMMA for hadron therapy.
000143203 260__ $$aBristol$$bIOP Publ.$$c2019
000143203 3367_ $$2DRIVER$$aarticle
000143203 3367_ $$2DataCite$$aOutput Types/Journal article
000143203 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554121708_14855
000143203 3367_ $$2BibTeX$$aARTICLE
000143203 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143203 3367_ $$00$$2EndNote$$aJournal Article
000143203 520__ $$aCarbon ion radiotherapy is an attractive alternative to conventional radiotherapy, especially in case of deep-seated and radio-resistant tumors. As a consequence of inelastic nuclear reactions between primary particles and patient's tissues, the primary carbon ions may undergo nuclear fragmentation. The resulting decrease of primary ions and production of secondary fragments have to be carefully considered for accurate dose calculations in the treatment planning systems. The experimental data currently available provide only general information on carbon ion fragmentation and are not sufficient to cover the entire range of beam energies, target configurations and compositions relevant for radiotherapy. Therefore, new investigations were carried out to analyse the outcomes of the inelastic nuclear reaction processes on a single-ion-based approach. Measurements were performed at HIT, using 430 MeV/u carbon ion beams crossing water and PMMA targets. Unique in this method is the possibility of measuring number and type of fragments produced from each single carbon ion, provided that they are within the acceptance of the experimental apparatus. Concerning the amount of residual carbon ions behind water and PMMA targets with the same water equivalent thickness (WET), no significant differences were found. The experimental attenuation curve was well reproduced by the simulations. However, in the experiments, differences were observed regarding the amount of secondary fragments produced in water and in PMMA targets with the same WET. Differences were also found between experiments and simulations. These findings should be considered when dosimetric measurements are performed with PMMA instead of water phantoms. The found differences between experiments and simulations may contribute to improve the nuclear interaction and fragmentation models in Monte Carlo codes.
000143203 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000143203 588__ $$aDataset connected to CrossRef, PubMed,
000143203 7001_ $$0P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e$$aGehrke, T.$$b1$$udkfz
000143203 7001_ $$0P:(DE-He78)431de9c528a71938b81e01ddff12a301$$aGallas, R.$$b2$$udkfz
000143203 7001_ $$aMairani, A.$$b3
000143203 7001_ $$0P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aJäkel, O.$$b4$$udkfz
000143203 7001_ $$0P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f$$aMartisikova, Maria$$b5$$eLast author$$udkfz
000143203 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/aafa46$$gVol. 64, no. 5, p. 055018 -$$n5$$p055018$$tPhysics in medicine and biology$$v64$$x1361-6560$$y2019
000143203 909CO $$ooai:inrepo02.dkfz.de:143203$$pVDB
000143203 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)65bcbf04c43c51ff8debd43f030962b5$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000143203 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000143203 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)431de9c528a71938b81e01ddff12a301$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000143203 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000143203 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000143203 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000143203 9141_ $$y2019
000143203 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000143203 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000143203 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2017
000143203 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143203 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143203 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000143203 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000143203 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143203 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000143203 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143203 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143203 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000143203 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000143203 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000143203 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lMedizinische Physik in der Strahlentherapie$$x0
000143203 980__ $$ajournal
000143203 980__ $$aVDB
000143203 980__ $$aI:(DE-He78)E040-20160331
000143203 980__ $$aUNRESTRICTED