001     143280
005     20240229112546.0
024 7 _ |a 10.1080/15592294.2019.1595998
|2 doi
024 7 _ |a pmid:30931802
|2 pmid
024 7 _ |a 1559-2294
|2 ISSN
024 7 _ |a 1559-2308
|2 ISSN
037 _ _ |a DKFZ-2019-00878
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Neumeyer, Sonja Maria
|0 P:(DE-He78)bc9ae72f1f27696587eeb1c81e48fb69
|b 0
|e First author
|u dkfz
245 _ _ |a Genome-wide DNA methylation differences according to oestrogen receptor beta status in colorectal cancer.
260 _ _ |a Austin, Tex.
|c 2019
|b Landes Bioscience
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1580298450_6877
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Involvement of sex hormones in colorectal cancer (CRC) development has been linked to oestrogen receptor β (ERβ). Expression of ERβ is found reduced in tumour tissue and inversely related to mortality. However, mechanisms are not well understood. Our study aimed to detect differentially methylated genes associated with ERβ expression, which could point to mechanisms by which ERβ could influence risk and prognosis of CRC. Epigenome-wide DNA methylation profiling was performed using Illumina HumanMethylation450k BeadChip arrays in two independent tumour sample sets of CRC patients recruited in 2003-2010 by the German DACHS study (discovery cohort n = 917, replication cohort n = 907). ERβ expression was measured using immunohistochemistry and scored as negative, moderate and high. Differentially methylated CpG sites and genomic regions were determined using limma in the R-package RnBeads. For the comparison of tumours with moderate/high ERβ versus negative expression, differentially methylated CpG sites were identified but not confirmed by replication. Comparing tumours of high with tumours of negative ERβ expression revealed 2,904 differentially methylated CpG sites of which 403 were replicated (FDR adjusted p-value<0.05). Replicated CpGs were annotated to genes such as CD36, HK1 or LRP5. A survival analysis indicates that 30 of the replicated CpGs are also associated with overall survival (FDR-adjusted p-value<0.05). The regional analysis identified 60 differentially methylated promotor regions. The epigenome-wide analysis identified both novel genes as well as genes already implicated in CRC. Follow-up mechanistic studies to better understand the regulatory role of ERβ could inform potential targets for improving treatment or prevention of CRC.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Popanda, Odilia
|0 P:(DE-He78)37610ef78c733753f0836ce0e41b9fda
|b 1
|u dkfz
700 1 _ |a Edelmann, Dominic
|0 P:(DE-He78)92820b4867c955a04f642707ecf35b40
|b 2
|u dkfz
700 1 _ |a Butterbach, Katja
|0 P:(DE-He78)7ca7eafba864e5c3ebb7598149380452
|b 3
|u dkfz
700 1 _ |a Toth, Csaba
|b 4
700 1 _ |a Roth, Wilfried
|b 5
700 1 _ |a Bläker, Hendrik
|b 6
700 1 _ |a Jiang, Ruijingfang
|0 P:(DE-He78)64ae432b27ff7349ba1cee8a916932a1
|b 7
|u dkfz
700 1 _ |a Herpel, Esther
|b 8
700 1 _ |a Jäkel, Cornelia
|0 P:(DE-He78)cf75137db0fa4e2da0922b14b9256b3c
|b 9
|u dkfz
700 1 _ |a Schmezer, Peter
|0 P:(DE-He78)141ce740f5d881812d2675147b72ecaf
|b 10
|u dkfz
700 1 _ |a Jansen, Lina
|0 P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09
|b 11
|u dkfz
700 1 _ |a Alwers, Elizabeth
|0 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
|b 12
|u dkfz
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 13
|u dkfz
700 1 _ |a Burwinkel, Barbara
|0 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
|b 14
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 15
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 16
|u dkfz
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 17
|e Last author
|u dkfz
773 _ _ |a 10.1080/15592294.2019.1595998
|g p. 1 - 17
|0 PERI:(DE-600)2248598-3
|n 5
|p 477-493
|t Epigenetics
|v 14
|y 2019
|x 1559-2308
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143280
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)bc9ae72f1f27696587eeb1c81e48fb69
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)37610ef78c733753f0836ce0e41b9fda
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)92820b4867c955a04f642707ecf35b40
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)7ca7eafba864e5c3ebb7598149380452
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)64ae432b27ff7349ba1cee8a916932a1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)cf75137db0fa4e2da0922b14b9256b3c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)141ce740f5d881812d2675147b72ecaf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EPIGENETICS-US : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 0
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 2
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 3
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 4
920 1 _ |0 I:(DE-He78)L501-20160331
|k L501
|l DKTK Frankfurt
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)L501-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21