000143312 001__ 143312
000143312 005__ 20240229112547.0
000143312 0247_ $$2doi$$a10.1007/s00401-019-01982-5
000143312 0247_ $$2pmid$$apmid:30830316
000143312 0247_ $$2ISSN$$a0001-6322
000143312 0247_ $$2ISSN$$a1432-0533
000143312 0247_ $$2altmetric$$aaltmetric:76206547
000143312 037__ $$aDKFZ-2019-00902
000143312 041__ $$aeng
000143312 082__ $$a610
000143312 1001_ $$aHellwig, Malte$$b0
000143312 245__ $$aTCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma.
000143312 260__ $$aHeidelberg$$bSpringer$$c2019
000143312 3367_ $$2DRIVER$$aarticle
000143312 3367_ $$2DataCite$$aOutput Types/Journal article
000143312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1566895731_21408
000143312 3367_ $$2BibTeX$$aARTICLE
000143312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143312 3367_ $$00$$2EndNote$$aJournal Article
000143312 520__ $$aThe TCF4 gene encodes for the basic helix-loop-helix transcription factor 4 (TCF4), which plays an important role in the development of the central nervous system (CNS). Haploinsufficiency of TCF4 was found to cause Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder. Recently, the screening of a large cohort of medulloblastoma (MB), a highly aggressive embryonal brain tumor, revealed almost 20% of adult patients with MB of the Sonic hedgehog (SHH) subtype carrying somatic TCF4 mutations. Interestingly, many of these mutations have previously been detected as germline mutations in patients with PTHS. We show here that overexpression of wild-type TCF4 in vitro significantly suppresses cell proliferation in MB cells, whereas mutant TCF4 proteins do not to the same extent. Furthermore, RNA sequencing revealed significant upregulation of multiple well-known tumor suppressors upon expression of wild-type TCF4. In vivo, a prenatal knockout of Tcf4 in mice caused a significant increase in apoptosis accompanied by a decreased proliferation and failed migration of cerebellar granule neuron precursor cells (CGNP), which are thought to be the cells of origin for SHH MB. In contrast, postnatal in vitro and in vivo knockouts of Tcf4 with and without an additional constitutive activation of the SHH pathway led to significantly increased proliferation of CGNP or MB cells. Finally, publicly available data from human MB show that relatively low expression levels of TCF4 significantly correlate with a worse clinical outcome. These results not only point to time-specific roles of Tcf4 during cerebellar development but also suggest a functional linkage between TCF4 mutations and the formation of SHH MB, proposing that TCF4 acts as a tumor suppressor during postnatal stages of cerebellar development.
000143312 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000143312 588__ $$aDataset connected to CrossRef, PubMed,
000143312 7001_ $$aLauffer, Marlen C$$b1
000143312 7001_ $$aBockmayr, Michael$$b2
000143312 7001_ $$aSpohn, Michael$$b3
000143312 7001_ $$aMerk, Daniel J$$b4
000143312 7001_ $$aHarrison, Luke$$b5
000143312 7001_ $$aAhlfeld, Julia$$b6
000143312 7001_ $$aKitowski, Annabel$$b7
000143312 7001_ $$aNeumann, Julia E$$b8
000143312 7001_ $$aOhli, Jasmin$$b9
000143312 7001_ $$aHoldhof, Dörthe$$b10
000143312 7001_ $$aNiesen, Judith$$b11
000143312 7001_ $$aSchoof, Melanie$$b12
000143312 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b13$$udkfz
000143312 7001_ $$aKraus, Cornelia$$b14
000143312 7001_ $$aZweier, Christiane$$b15
000143312 7001_ $$aHolmberg, Dan$$b16
000143312 7001_ $$aSchüller, Ulrich$$b17
000143312 773__ $$0PERI:(DE-600)1458410-4$$a10.1007/s00401-019-01982-5$$gVol. 137, no. 4, p. 657 - 673$$n4$$p657 - 673$$tActa neuropathologica$$v137$$x1432-0533$$y2019
000143312 909CO $$ooai:inrepo02.dkfz.de:143312$$pVDB
000143312 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000143312 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000143312 9141_ $$y2019
000143312 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000143312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA NEUROPATHOL : 2017
000143312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143312 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143312 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000143312 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000143312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143312 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000143312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143312 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143312 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000143312 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000143312 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACTA NEUROPATHOL : 2017
000143312 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000143312 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x1
000143312 980__ $$ajournal
000143312 980__ $$aVDB
000143312 980__ $$aI:(DE-He78)B062-20160331
000143312 980__ $$aI:(DE-He78)L101-20160331
000143312 980__ $$aUNRESTRICTED