001     143340
005     20240229112549.0
024 7 _ |a 10.1007/s11548-019-01939-9
|2 doi
024 7 _ |a pmid:30903566
|2 pmid
024 7 _ |a 1861-6410
|2 ISSN
024 7 _ |a 1861-6429
|2 ISSN
024 7 _ |a altmetric:56814481
|2 altmetric
037 _ _ |a DKFZ-2019-00930
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Adler, Tim J
|0 0000-0002-3424-6629
|b 0
|e First author
245 _ _ |a Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks.
260 _ _ |a Heidelberg [u.a.]
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1567494683_4664
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Optical imaging is evolving as a key technique for advanced sensing in the operating room. Recent research has shown that machine learning algorithms can be used to address the inverse problem of converting pixel-wise multispectral reflectance measurements to underlying tissue parameters, such as oxygenation. Assessment of the specific hardware used in conjunction with such algorithms, however, has not properly addressed the possibility that the problem may be ill-posed.We present a novel approach to the assessment of optical imaging modalities, which is sensitive to the different types of uncertainties that may occur when inferring tissue parameters. Based on the concept of invertible neural networks, our framework goes beyond point estimates and maps each multispectral measurement to a full posterior probability distribution which is capable of representing ambiguity in the solution via multiple modes. Performance metrics for a hardware setup can then be computed from the characteristics of the posteriors.Application of the assessment framework to the specific use case of camera selection for physiological parameter estimation yields the following insights: (1) estimation of tissue oxygenation from multispectral images is a well-posed problem, while (2) blood volume fraction may not be recovered without ambiguity. (3) In general, ambiguity may be reduced by increasing the number of spectral bands in the camera.Our method could help to optimize optical camera design in an application-specific manner.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Ardizzone, Lynton
|b 1
700 1 _ |a Vemuri, Anant
|0 P:(DE-He78)59550e3c9ae4b46b714843863e0db8d9
|b 2
|u dkfz
700 1 _ |a Ayala, Leonardo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gröhl, Janek
|0 P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71
|b 4
|u dkfz
700 1 _ |a Kirchner, Thomas
|0 P:(DE-He78)fd68f49dada874ac262fadf9fde869df
|b 5
|u dkfz
700 1 _ |a Wirkert, Sebastian
|0 P:(DE-He78)f105ac59d0f6d441f098d3144e0defee
|b 6
|u dkfz
700 1 _ |a Kruse, Jakob
|b 7
700 1 _ |a Rother, Carsten
|b 8
700 1 _ |a Köthe, Ullrich
|b 9
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1007/s11548-019-01939-9
|0 PERI:(DE-600)2235881-X
|n 6
|p 997-1007
|t International journal of computer assisted radiology and surgery
|v 14
|y 2019
|x 1861-6429
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143340
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0000-0002-3424-6629
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)59550e3c9ae4b46b714843863e0db8d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)fd68f49dada874ac262fadf9fde869df
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)f105ac59d0f6d441f098d3144e0defee
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)26a1176cd8450660333a012075050072
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J COMPUT ASS RAD : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l Computer-assistierte medizinische Interventionen
|x 0
920 1 _ |0 I:(DE-He78)E131-20160331
|k E131
|l Computer-assistierte Interventionen
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)E131-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21