001     143345
005     20240229112549.0
024 7 _ |a 10.1158/2326-6066.CIR-18-0584
|2 doi
024 7 _ |a pmid:30902818
|2 pmid
024 7 _ |a 2326-6066
|2 ISSN
024 7 _ |a 2326-6074
|2 ISSN
024 7 _ |a altmetric:60760095
|2 altmetric
037 _ _ |a DKFZ-2019-00935
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Bonsack, Maria
|0 P:(DE-He78)ec22a465429f245d6ef43a2329223262
|b 0
|e First author
245 _ _ |a Performance evaluation of MHC class-I binding prediction tools based on an experimentally validated MHC-peptide binding dataset.
260 _ _ |a Philadelphia, Pa.
|c 2019
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634729790_5773
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The question whether a protein can be processed and resulting peptides presented by major histocompatibility complex (MHC) is of high importance for immunotherapy design. MHC ligands can be predicted by in silico peptide-MHC class-I binding prediction algorithms. However, there are considerable differences in prediction performance, depending on the selected algorithm, MHC class-I type and peptide length. We evaluated the prediction performance of 13 algorithms based on binding affinity data of 8-11-mer peptides derived from the HPV16 E6 and E7 proteins to the most prevalent human leukocyte antigen (HLA) types. Peptides from high to low predicted binding likelihood were synthesized and their HLA binding experimentally verified by in vitro competitive binding assays. Based on the actual binding capacity of the peptides, the performance of prediction algorithms was analyzed by calculating receiver operating characteristics (ROC) and the area under the curve (AROC). No algorithm outperformed others, but different algorithms predicted best for particular HLA types and peptide lengths. Sensitivity, specificity and accuracy of decision thresholds were calculated. Commonly used decision thresholds yielded only 40% sensitivity. To increase sensitivity, optimal thresholds were calculated, validated and compared. In order to make maximal use of online available prediction algorithms, we developed MHCcombine, a web application that allows simultaneous querying and output combination of up to 13 prediction algorithms. Taken together, we here provide an evaluation of peptide-MHC class-I binding prediction tools and recommendations how to increase prediction sensitivity to extend the number of potential epitopes applicable as targets for immunotherapy.
536 _ _ |a 316 - Infections and cancer (POF3-316)
|0 G:(DE-HGF)POF3-316
|c POF3-316
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Hoppe, Stephanie
|0 P:(DE-HGF)0
|b 1
|e First author
700 1 _ |a Winter, Jan
|b 2
700 1 _ |a Tichy, Diana
|0 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
|b 3
700 1 _ |a Zeller, Christine
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Küpper, Marius
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schitter, Eva Christine
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Blatnik, Renata
|0 P:(DE-He78)fa6bce202179e54d1fba46a5ec5931e3
|b 7
700 1 _ |a Riemer, Angelika
|0 P:(DE-He78)3743a1b712edca2ffa829b7096d7037e
|b 8
|e Last author
773 _ _ |a 10.1158/2326-6066.CIR-18-0584
|g p. canimm.0584.2018 -
|0 PERI:(DE-600)2732517-9
|n 5
|p 719-736
|t Cancer immunology research
|v 7
|y 2019
|x 2326-6074
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143345
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)ec22a465429f245d6ef43a2329223262
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)fa6bce202179e54d1fba46a5ec5931e3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3743a1b712edca2ffa829b7096d7037e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-316
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Infections and cancer
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER IMMUNOL RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCER IMMUNOL RES : 2017
920 2 _ |0 I:(DE-He78)F130-20160331
|k F130
|l F130 Immuntherapie und -prävention
|x 0
920 0 _ |0 I:(DE-He78)F130-20160331
|k F130
|l F130 Immuntherapie und -prävention
|x 0
920 1 _ |0 I:(DE-He78)F130-20160331
|k F130
|l F130 Immuntherapie und -prävention
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F130-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21