001     143370
005     20240229112550.0
024 7 _ |a 10.1186/s12911-019-0794-z
|2 doi
024 7 _ |a pmid:30885183
|2 pmid
024 7 _ |a pmc:PMC6421684
|2 pmc
024 7 _ |a altmetric:57225943
|2 altmetric
037 _ _ |a DKFZ-2019-00958
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Ulrich, H.
|b 0
245 _ _ |a QL4MDR: a GraphQL query language for ISO 11179-based metadata repositories.
260 _ _ |a London
|c 2019
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576056533_23888
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a LA:E260
520 _ _ |a Heterogeneous healthcare instance data can hardly be integrated without harmonizing its schema-level metadata. Many medical research projects and organizations use metadata repositories to edit, store and reuse data elements. However, existing metadata repositories differ regarding software implementation and have shortcomings when it comes to exchanging metadata. This work aims to define a uniform interface with a technical interlingua between the different MDR implementations in order to enable and facilitate the exchange of metadata, to query over distributed systems and to promote cooperation. To design a unified interface for multiple existing MDRs, a standardized data model must be agreed on. The ISO 11179 is an international standard for the representation of metadata, and since most MDR systems claim to be at least partially compliant, it is suitable for defining an interface thereupon. Therefore, each repository must be able to define which parts can be served and the interface must be able to handle highly linked data. GraphQL is a data access layer and defines query techniques designed to navigate easily through complex data structures.We propose QL4MDR, an ISO 11179-3 compatible GraphQL query language. The GraphQL schema for QL4MDR is derived from the ISO 11179 standard and defines objects, fields, queries and mutation types. Entry points within the schema define the path through the graph to enable search functionalities, but also the exchange is promoted by mutation types, which allow creating, updating and deleting of metadata. QL4MDR is the foundation for the uniform interface, which is implemented in a modern web-based interface prototype.We have introduced a uniform query interface for metadata repositories combining the ISO 11179 standard for metadata repositories and the GraphQL query language. A reference implementation based on the existing Samply.MDR was implemented. The interface facilitates access to metadata, enables better interaction with metadata as well as a basis for connecting existing repositories. We invite other ISO 11179-based metadata repositories to take this approach into account.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Kern, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tas, D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kock-Schoppenhauer, A. K.
|b 3
700 1 _ |a Ückert, F.
|0 P:(DE-He78)28406352f67b7b6d43b303a4e955147a
|b 4
|u dkfz
700 1 _ |a Ingenerf, J.
|b 5
700 1 _ |a Lablans, Martin
|0 P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439
|b 6
|e Last author
|u dkfz
773 _ _ |a 10.1186/s12911-019-0794-z
|g Vol. 19, no. 1, p. 45
|0 PERI:(DE-600)2046490-3
|n 1
|p 45
|t BMC medical informatics and decision making
|v 19
|y 2019
|x 1472-6947
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143370
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)28406352f67b7b6d43b303a4e955147a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC MED INFORM DECIS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E240-20160331
|k E240
|l Medizinische Informatik in der Translationalen Onkologie
|x 0
920 1 _ |0 I:(DE-He78)E260-20160331
|k E260
|l Verbundinformationssysteme
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E240-20160331
980 _ _ |a I:(DE-He78)E260-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21