001     143427
005     20240229112552.0
024 7 _ |a 10.1038/s41591-019-0405-7
|2 doi
024 7 _ |a pmid:30936548
|2 pmid
024 7 _ |a 1078-8956
|2 ISSN
024 7 _ |a 1546-170X
|2 ISSN
024 7 _ |a altmetric:58269345
|2 altmetric
037 _ _ |a DKFZ-2019-01015
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Thomas, Andrew Maltez
|0 0000-0001-5789-3354
|b 0
245 _ _ |a Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation.
260 _ _ |a New York, NY
|c 2019
|b Nature America Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562136138_21534
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but questions remain about the replicability of biomarkers across cohorts and populations. We performed a meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple datasets showed consistently high accuracy in datasets not considered for model training and independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw metagenomes showed that the choline trimethylamine-lyase gene was overabundant in CRC (P = 0.001), identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic studies.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Manghi, Paolo
|b 1
700 1 _ |a Asnicar, Francesco
|0 0000-0003-3732-1468
|b 2
700 1 _ |a Pasolli, Edoardo
|b 3
700 1 _ |a Armanini, Federica
|b 4
700 1 _ |a Zolfo, Moreno
|0 0000-0001-6661-4046
|b 5
700 1 _ |a Beghini, Francesco
|0 0000-0002-8105-9607
|b 6
700 1 _ |a Manara, Serena
|b 7
700 1 _ |a Karcher, Nicolai
|b 8
700 1 _ |a Pozzi, Chiara
|b 9
700 1 _ |a Gandini, Sara
|0 0000-0002-1348-4548
|b 10
700 1 _ |a Serrano, Davide
|b 11
700 1 _ |a Tarallo, Sonia
|0 0000-0003-0887-2607
|b 12
700 1 _ |a Francavilla, Antonio
|0 0000-0003-1594-2837
|b 13
700 1 _ |a Gallo, Gaetano
|0 0000-0003-1066-4671
|b 14
700 1 _ |a Trompetto, Mario
|b 15
700 1 _ |a Ferrero, Giulio
|0 0000-0002-4580-0680
|b 16
700 1 _ |a Mizutani, Sayaka
|b 17
700 1 _ |a Shiroma, Hirotsugu
|b 18
700 1 _ |a Shiba, Satoshi
|b 19
700 1 _ |a Shibata, Tatsuhiro
|0 0000-0002-0477-210X
|b 20
700 1 _ |a Yachida, Shinichi
|b 21
700 1 _ |a Yamada, Takuji
|b 22
700 1 _ |a Wirbel, Jakob
|0 0000-0002-4073-3562
|b 23
700 1 _ |a Schrotz-King, Petra
|0 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
|b 24
|u dkfz
700 1 _ |a Ulrich, Cornelia M
|b 25
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 26
|u dkfz
700 1 _ |a Arumugam, Manimozhiyan
|0 0000-0002-0886-9101
|b 27
700 1 _ |a Bork, Peer
|0 0000-0002-2627-833X
|b 28
700 1 _ |a Zeller, Georg
|0 0000-0003-1429-7485
|b 29
700 1 _ |a Cordero, Francesca
|b 30
700 1 _ |a Dias-Neto, Emmanuel
|0 0000-0001-5670-8559
|b 31
700 1 _ |a Setubal, João Carlos
|b 32
700 1 _ |a Tett, Adrian
|b 33
700 1 _ |a Pardini, Barbara
|0 0000-0001-9571-4257
|b 34
700 1 _ |a Rescigno, Maria
|b 35
700 1 _ |a Waldron, Levi
|0 0000-0003-2725-0694
|b 36
700 1 _ |a Naccarati, Alessio
|0 0000-0001-5774-0905
|b 37
700 1 _ |a Segata, Nicola
|0 0000-0002-1583-5794
|b 38
773 _ _ |a 10.1038/s41591-019-0405-7
|g Vol. 25, no. 4, p. 667 - 678
|0 PERI:(DE-600)1484517-9
|n 4
|p 667 - 678
|t Nature medicine
|v 25
|y 2019
|x 1546-170X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143427
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT MED : 2017
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21