001     143429
005     20240229112552.0
024 7 _ |a 10.1038/s41591-019-0406-6
|2 doi
024 7 _ |a pmid:30936547
|2 pmid
024 7 _ |a 1078-8956
|2 ISSN
024 7 _ |a 1546-170X
|2 ISSN
024 7 _ |a altmetric:58269364
|2 altmetric
037 _ _ |a DKFZ-2019-01017
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Wirbel, Jakob
|0 0000-0002-4073-3562
|b 0
245 _ _ |a Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer.
260 _ _ |a New York, NY
|c 2019
|b Nature America Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562136078_22589
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Association studies have linked microbiome alterations with many human diseases. However, they have not always reported consistent results, thereby necessitating cross-study comparisons. Here, a meta-analysis of eight geographically and technically diverse fecal shotgun metagenomic studies of colorectal cancer (CRC, n = 768), which was controlled for several confounders, identified a core set of 29 species significantly enriched in CRC metagenomes (false discovery rate (FDR) < 1 × 10-5). CRC signatures derived from single studies maintained their accuracy in other studies. By training on multiple studies, we improved detection accuracy and disease specificity for CRC. Functional analysis of CRC metagenomes revealed enriched protein and mucin catabolism genes and depleted carbohydrate degradation genes. Moreover, we inferred elevated production of secondary bile acids from CRC metagenomes, suggesting a metabolic link between cancer-associated gut microbes and a fat- and meat-rich diet. Through extensive validations, this meta-analysis firmly establishes globally generalizable, predictive taxonomic and functional microbiome CRC signatures as a basis for future diagnostics.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Pyl, Paul Theodor
|0 0000-0002-7651-883X
|b 1
700 1 _ |a Kartal, Ece
|b 2
700 1 _ |a Zych, Konrad
|0 0000-0001-7426-0516
|b 3
700 1 _ |a Kashani, Alireza
|b 4
700 1 _ |a Milanese, Alessio
|0 0000-0002-7050-2239
|b 5
700 1 _ |a Fleck, Jonas S
|b 6
700 1 _ |a Voigt, Anita Y
|b 7
700 1 _ |a Palleja, Albert
|0 0000-0001-5388-4063
|b 8
700 1 _ |a Ponnudurai, Ruby
|b 9
700 1 _ |a Sunagawa, Shinichi
|0 0000-0003-3065-0314
|b 10
700 1 _ |a Coelho, Luis Pedro
|b 11
700 1 _ |a Schrotz-King, Petra
|0 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
|b 12
|u dkfz
700 1 _ |a Vogtmann, Emily
|b 13
700 1 _ |a Habermann, Nina
|b 14
700 1 _ |a Niméus, Emma
|b 15
700 1 _ |a Thomas, Andrew M
|0 0000-0001-5789-3354
|b 16
700 1 _ |a Manghi, Paolo
|b 17
700 1 _ |a Gandini, Sara
|0 0000-0002-1348-4548
|b 18
700 1 _ |a Serrano, Davide
|b 19
700 1 _ |a Mizutani, Sayaka
|b 20
700 1 _ |a Shiroma, Hirotsugu
|b 21
700 1 _ |a Shiba, Satoshi
|b 22
700 1 _ |a Shibata, Tatsuhiro
|0 0000-0002-0477-210X
|b 23
700 1 _ |a Yachida, Shinichi
|b 24
700 1 _ |a Yamada, Takuji
|b 25
700 1 _ |a Waldron, Levi
|0 0000-0003-2725-0694
|b 26
700 1 _ |a Naccarati, Alessio
|0 0000-0001-5774-0905
|b 27
700 1 _ |a Segata, Nicola
|0 0000-0002-1583-5794
|b 28
700 1 _ |a Sinha, Rashmi
|b 29
700 1 _ |a Ulrich, Cornelia M
|b 30
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 31
|u dkfz
700 1 _ |a Arumugam, Manimozhiyan
|0 0000-0002-0886-9101
|b 32
700 1 _ |a Bork, Peer
|0 0000-0002-2627-833X
|b 33
700 1 _ |a Zeller, Georg
|0 0000-0003-1429-7485
|b 34
773 _ _ |a 10.1038/s41591-019-0406-6
|g Vol. 25, no. 4, p. 679 - 689
|0 PERI:(DE-600)1484517-9
|n 4
|p 679 - 689
|t Nature medicine
|v 25
|y 2019
|x 1546-170X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143429
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 31
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT MED : 2017
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21