001     143499
005     20240229112554.0
024 7 _ |a 10.18632/aging.101900
|2 doi
024 7 _ |a pmid:31009935
|2 pmid
024 7 _ |a altmetric:59394024
|2 altmetric
037 _ _ |a DKFZ-2019-01083
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Fiorito, Giovanni
|b 0
245 _ _ |a Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis.
260 _ _ |a [S.l.]
|c 2019
|b Impact Journals, LLC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1556094393_30509
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a McCrory, Cathal
|b 1
700 1 _ |a Robinson, Oliver
|b 2
700 1 _ |a Carmeli, Cristian
|b 3
700 1 _ |a Rosales, Carolina Ochoa
|b 4
700 1 _ |a Zhang, Yan
|0 P:(DE-He78)6a8f87626cb610618a60d742677284cd
|b 5
|u dkfz
700 1 _ |a Colicino, Elena
|b 6
700 1 _ |a Dugué, Pierre-Antoine
|b 7
700 1 _ |a Artaud, Fanny
|b 8
700 1 _ |a McKay, Gareth J
|b 9
700 1 _ |a Jeong, Ayoung
|b 10
700 1 _ |a Mishra, Pashupati P
|b 11
700 1 _ |a Nøst, Therese H
|b 12
700 1 _ |a Krogh, Vittorio
|b 13
700 1 _ |a Panico, Salvatore
|b 14
700 1 _ |a Sacerdote, Carlotta
|b 15
700 1 _ |a Tumino, Rosario
|b 16
700 1 _ |a Palli, Domenico
|b 17
700 1 _ |a Matullo, Giuseppe
|b 18
700 1 _ |a Guarrera, Simonetta
|b 19
700 1 _ |a Gandini, Martina
|b 20
700 1 _ |a Bochud, Murielle
|b 21
700 1 _ |a Dermitzakis, Emmanouil
|b 22
700 1 _ |a Muka, Taulant
|b 23
700 1 _ |a Schwartz, Joel
|b 24
700 1 _ |a Vokonas, Pantel S
|b 25
700 1 _ |a Just, Allan
|b 26
700 1 _ |a Hodge, Allison M
|b 27
700 1 _ |a Giles, Graham G
|b 28
700 1 _ |a Southey, Melissa C
|b 29
700 1 _ |a Hurme, Mikko A
|b 30
700 1 _ |a Young, Ian
|b 31
700 1 _ |a McKnight, Amy Jayne
|b 32
700 1 _ |a Kunze, Sonja
|b 33
700 1 _ |a Waldenberger, Melanie
|b 34
700 1 _ |a Peters, Annette
|b 35
700 1 _ |a Schwettmann, Lars
|b 36
700 1 _ |a Lund, Eiliv
|b 37
700 1 _ |a Baccarelli, Andrea
|b 38
700 1 _ |a Milne, Roger L
|b 39
700 1 _ |a Kenny, Rose A
|b 40
700 1 _ |a Elbaz, Alexis
|b 41
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 42
|u dkfz
700 1 _ |a Kee, Frank
|b 43
700 1 _ |a Voortman, Trudy
|b 44
700 1 _ |a Probst-Hensch, Nicole
|b 45
700 1 _ |a Lehtimäki, Terho
|b 46
700 1 _ |a Elliot, Paul
|b 47
700 1 _ |a Stringhini, Silvia
|b 48
700 1 _ |a Vineis, Paolo
|b 49
700 1 _ |a Polidoro, Silvia
|b 50
700 1 _ |a Consortium, BIOS
|b 51
|e Collaboration Author
700 1 _ |a consortium, Lifepath
|b 52
|e Collaboration Author
773 _ _ |a 10.18632/aging.101900
|g Vol. 11, no. 7, p. 2045 - 2070
|0 PERI:(DE-600)2535337-8
|n 7
|p 2045 - 2070
|t Aging
|v 11
|y 2019
|x 1945-4589
909 C O |o oai:inrepo02.dkfz.de:143499
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)6a8f87626cb610618a60d742677284cd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 42
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AGING-US : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b AGING-US : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21