000143505 001__ 143505
000143505 005__ 20240229112555.0
000143505 0247_ $$2doi$$a10.1186/s12879-019-3902-x
000143505 0247_ $$2pmid$$apmid:30943917
000143505 0247_ $$2pmc$$apmc:PMC6448304
000143505 0247_ $$2altmetric$$aaltmetric:58441688
000143505 037__ $$aDKFZ-2019-01089
000143505 041__ $$aeng
000143505 082__ $$a610
000143505 1001_ $$00000-0002-1411-1209$$aBozorgmehr, Kayvan$$b0
000143505 245__ $$aUsing country of origin to inform targeted tuberculosis screening in asylum seekers: a modelling study of screening data in a German federal state, 2002-2015.
000143505 260__ $$aHeidelberg$$bSpringer$$c2019
000143505 3367_ $$2DRIVER$$aarticle
000143505 3367_ $$2DataCite$$aOutput Types/Journal article
000143505 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556543328_25020
000143505 3367_ $$2BibTeX$$aARTICLE
000143505 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143505 3367_ $$00$$2EndNote$$aJournal Article
000143505 520__ $$aScreening programmes for tuberculosis (TB) among immigrants rarely consider the heterogeneity of risk related to migrants' country of origin. We assess the performance of a large screening programme in asylum seekers by analysing (i) the difference in yield and numbers needed to screen (NNS) by country and WHO-reported TB burden, (ii) the possible impact of screening thresholds on sensitivity, and (iii) the value of WHO-estimated TB burden to improve the prediction accuracy of screening yield.We combined individual data of 119,037 asylum seekers screened for TB in Germany (2002-2015) with TB estimates of the World Health Organization (WHO) (1990-2014) for their 81 countries of origin. Adjusted rate ratios (aRR) and 95% credible intervals (CrI) of the observed yield of screening were calculated in Bayesian Poisson regression models by categories of WHO-estimated TB incidence. We assessed changes in sensitivity depending on screening thresholds, used WHO TB estimates as prior information to predict TB in asylum seekers, and modelled country-specific probabilities of numbers needed to screen (NNS) conditional on different screening thresholds.The overall yield was 82 per 100,000 and the annual yield ranged from 44.1 to 279.7 per 100,000. Country-specific yields ranged from 10 (95%- CrI: 1-47) to 683 (95%-CrI: 306-1336) per 100,000 in Iraqi and Somali asylum seekers, respectively. The observed yield was higher in asylum seekers from countries with a WHO-estimated TB incidence > 50 relative to those from countries ≤50 per 100,000 (aRR: 4.17, 95%-CrI: 2.86-6.59). Introducing a threshold in the range of a WHO-estimated TB incidence of 50 and 100 per 100,000 resulted in the lowest 'loss' in sensitivity. WHO's TB prevalence estimates improved prediction accuracy for eight of the 11 countries, and allowed modelling country-specific probabilities of NNS.WHO's TB data can inform the estimation of screening yield and thus be used to improve screening efficiency in asylum seekers. This may help to develop more targeted screening strategies by reducing uncertainty in estimates of expected country-specific yield, and identify thresholds with lowest loss in sensitivity. Further modelling studies are needed which combine clinical, diagnostic and country-specific parameters.
000143505 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000143505 588__ $$aDataset connected to CrossRef, PubMed,
000143505 7001_ $$aPreussler, Stella$$b1
000143505 7001_ $$aWagner, Ulrich$$b2
000143505 7001_ $$aJoggerst, Brigitte$$b3
000143505 7001_ $$aSzecsenyi, Joachim$$b4
000143505 7001_ $$aRazum, Oliver$$b5
000143505 7001_ $$0P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91$$aStock, Christian$$b6$$eLast author$$udkfz
000143505 773__ $$0PERI:(DE-600)2041550-3$$a10.1186/s12879-019-3902-x$$gVol. 19, no. 1, p. 304$$n1$$p304$$tBMC infectious diseases$$v19$$x1471-2334$$y2019
000143505 909CO $$ooai:inrepo02.dkfz.de:143505$$pVDB
000143505 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000143505 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000143505 9141_ $$y2019
000143505 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC INFECT DIS : 2017
000143505 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143505 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143505 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143505 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000143505 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000143505 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000143505 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review
000143505 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000143505 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000143505 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000143505 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143505 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143505 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143505 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000143505 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000143505 980__ $$ajournal
000143505 980__ $$aVDB
000143505 980__ $$aI:(DE-He78)C070-20160331
000143505 980__ $$aUNRESTRICTED