001     143552
005     20240229112557.0
024 7 _ |a 10.1158/1055-9965.EPI-18-0079
|2 doi
024 7 _ |a pmid:30352818
|2 pmid
024 7 _ |a 1055-9965
|2 ISSN
024 7 _ |a 1538-7755
|2 ISSN
024 7 _ |a altmetric:50329686
|2 altmetric
037 _ _ |a DKFZ-2019-01133
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Adams, Charleen D
|b 0
245 _ _ |a Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study.
260 _ _ |a Philadelphia, Pa.
|c 2019
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562054752_8973
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Whether associations between circulating metabolites and prostate cancer are causal is unknown. We report on the largest study of metabolites and prostate cancer (2,291 cases and 2,661 controls) and appraise causality for a subset of the prostate cancer-metabolite associations using two-sample Mendelian randomization (MR).The case-control portion of the study was conducted in nine UK centers with men ages 50-69 years who underwent prostate-specific antigen screening for prostate cancer within the Prostate Testing for Cancer and Treatment (ProtecT) trial. Two data sources were used to appraise causality: a genome-wide association study (GWAS) of metabolites in 24,925 participants and a GWAS of prostate cancer in 44,825 cases and 27,904 controls within the Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.Thirty-five metabolites were strongly associated with prostate cancer (P < 0.0014, multiple-testing threshold). These fell into four classes: (i) lipids and lipoprotein subclass characteristics (total cholesterol and ratios, cholesterol esters and ratios, free cholesterol and ratios, phospholipids and ratios, and triglyceride ratios); (ii) fatty acids and ratios; (iii) amino acids; (iv) and fluid balance. Fourteen top metabolites were proxied by genetic variables, but MR indicated these were not causal.We identified 35 circulating metabolites associated with prostate cancer presence, but found no evidence of causality for those 14 testable with MR. Thus, the 14 MR-tested metabolites are unlikely to be mechanistically important in prostate cancer risk.The metabolome provides a promising set of biomarkers that may aid prostate cancer classification.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Richmond, Rebecca
|b 1
700 1 _ |a Ferreira, Diana L Santos
|b 2
700 1 _ |a Spiller, Wes
|b 3
700 1 _ |a Tan, Vanessa
|b 4
700 1 _ |a Zheng, Jie
|b 5
700 1 _ |a Würtz, Peter
|b 6
700 1 _ |a Donovan, Jenny
|b 7
700 1 _ |a Hamdy, Freddie
|b 8
700 1 _ |a Neal, David
|b 9
700 1 _ |a Lane, J Athene
|b 10
700 1 _ |a Smith, George Davey
|b 11
700 1 _ |a Relton, Caroline
|b 12
700 1 _ |a Eeles, Rosalind A
|b 13
700 1 _ |a Haiman, Christopher A
|b 14
700 1 _ |a Kote-Jarai, ZSofia
|b 15
700 1 _ |a Schumacher, Fredrick R
|b 16
700 1 _ |a Olama, Ali Amin Al
|b 17
700 1 _ |a Benlloch, Sara
|b 18
700 1 _ |a Muir, Kenneth
|b 19
700 1 _ |a Berndt, Sonja I
|b 20
700 1 _ |a Conti, David V
|b 21
700 1 _ |a Wiklund, Fredrik
|b 22
700 1 _ |a Chanock, Stephen J
|b 23
700 1 _ |a Gapstur, Susan
|b 24
700 1 _ |a Stevens, Victoria L
|b 25
700 1 _ |a Tangen, Catherine M
|b 26
700 1 _ |a Batra, Jyotsna
|b 27
700 1 _ |a Clements, Judith A
|b 28
700 1 _ |a Gronberg, Henrik
|b 29
700 1 _ |a Pashayan, Nora
|b 30
700 1 _ |a Schleutker, Johanna
|b 31
700 1 _ |a Albanes, Demetrius
|b 32
700 1 _ |a Wolk, Alicja
|b 33
700 1 _ |a West, Catharine M L
|b 34
700 1 _ |a Mucci, Lorelei A
|b 35
700 1 _ |a Cancel-Tassin, Géraldine
|b 36
700 1 _ |a Koutros, Stella
|b 37
700 1 _ |a Sorensen, Karina Dalsgaard
|b 38
700 1 _ |a Maehle, Lovise
|b 39
700 1 _ |a Travis, Ruth C
|b 40
700 1 _ |a Hamilton, Robert J
|b 41
700 1 _ |a Ingles, Sue Ann
|b 42
700 1 _ |a Rosenstein, Barry S
|b 43
700 1 _ |a Lu, Yong-Jie
|b 44
700 1 _ |a Giles, Graham G
|b 45
700 1 _ |a Kibel, Adam S
|b 46
700 1 _ |a Vega, Ana
|b 47
700 1 _ |a Kogevinas, Manolis
|b 48
700 1 _ |a Penney, Kathryn L
|b 49
700 1 _ |a Park, Jong Y
|b 50
700 1 _ |a Stanford, Janet L
|b 51
700 1 _ |a Cybulski, Cezary
|b 52
700 1 _ |a Nordestgaard, Børge G
|b 53
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 54
|u dkfz
700 1 _ |a Maier, Christiane
|b 55
700 1 _ |a Kim, Jeri
|b 56
700 1 _ |a John, Esther M
|b 57
700 1 _ |a Teixeira, Manuel R
|b 58
700 1 _ |a Neuhausen, Susan L
|b 59
700 1 _ |a De Ruyck, Kim
|b 60
700 1 _ |a Razack, Azad
|b 61
700 1 _ |a Newcomb, Lisa F
|b 62
700 1 _ |a Lessel, Davor
|b 63
700 1 _ |a Kaneva, Radka P
|b 64
700 1 _ |a Usmani, Nawaid
|b 65
700 1 _ |a Claessens, Frank
|b 66
700 1 _ |a Townsend, Paul A
|b 67
700 1 _ |a Dominguez, Manuela Gago
|b 68
700 1 _ |a Roobol, Monique J
|b 69
700 1 _ |a Menegaux, Florence
|b 70
700 1 _ |a Khaw, Kay-Tee
|b 71
700 1 _ |a Cannon-Albright, Lisa A
|b 72
700 1 _ |a Pandha, Hardev
|b 73
700 1 _ |a Thibodeau, Stephen N
|b 74
700 1 _ |a Martin, Richard M
|b 75
700 1 _ |a consortium, PRACTICAL
|b 76
|e Collaboration Author
773 _ _ |a 10.1158/1055-9965.EPI-18-0079
|g Vol. 28, no. 1, p. 208 - 216
|0 PERI:(DE-600)2036781-8
|n 1
|p 208 - 216
|t Cancer epidemiology, biomarkers & prevention
|v 28
|y 2019
|x 1538-7755
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143552
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 54
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER EPIDEM BIOMAR : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21