000143590 001__ 143590
000143590 005__ 20240229112558.0
000143590 0247_ $$2doi$$a10.1002/ijc.32073
000143590 0247_ $$2pmid$$apmid:30561010
000143590 0247_ $$2ISSN$$a0020-7136
000143590 0247_ $$2ISSN$$a1097-0215
000143590 037__ $$aDKFZ-2019-01170
000143590 041__ $$aeng
000143590 082__ $$a610
000143590 1001_ $$0P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aGao, Xin$$b0$$eFirst author$$udkfz
000143590 245__ $$aPre-diagnostic derivatives of reactive oxygen metabolites and the occurrence of lung, colorectal, breast and prostate cancer: An individual participant data meta-analysis of two large population-based studies.
000143590 260__ $$aBognor Regis$$bWiley-Liss$$c2019
000143590 3367_ $$2DRIVER$$aarticle
000143590 3367_ $$2DataCite$$aOutput Types/Journal article
000143590 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636106533_29692
000143590 3367_ $$2BibTeX$$aARTICLE
000143590 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143590 3367_ $$00$$2EndNote$$aJournal Article
000143590 520__ $$aOxidative stress may be involved in carcinogenesis and biomarkers of oxidative stress like derivatives of reactive oxygen metabolites (d-ROM) may be useful for cancer prediction. However, no previous study assessed the association of pre-diagnostic d-ROM measurements with cancer incidence. We measured serum d-ROM levels in a cohort sample of n = 4,345 participants of the German ESTHER study and in a case-cohort sample of the Norwegian Tromsø study (cancer cases: n = 941; subcohort: n = 1,000). Moreover, d-ROM was repeatedly measured at follow-ups of both studies. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were derived by (weighted) multivariable-adjusted Cox regression with time-dependent modeling of d-ROM levels for incident lung, colorectal, breast and prostate cancer. Individual study results were pooled by random effects meta-analysis. The HRs (95% CI) for comparison of top and bottom d-ROM tertile were statistically significant for lung (1.90 [1.25-2.89]), colorectal (1.70 [1.15-2.51]) and breast cancer incidence (1.45 [1.01-2.09]) but not for prostate cancer incidence (1.20 [0.84-1.72]). In conclusion, this individual participant data meta-analysis of two large population-based cohort studies with repeated d-ROM measurements yielded evidence for an involvement of high oxidative stress in carcinogenesis. Given the observed associations of pre-diagnostic d-ROM measurements with lung, colorectal and breast cancer incidence, subjects with increased serum d-ROM levels should be recommended to reduce these levels by lifestyle changes including smoking cessation, a healthy diet and an increase in physical activity.
000143590 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000143590 588__ $$aDataset connected to CrossRef, PubMed,
000143590 7001_ $$aWilsgaard, Tom$$b1
000143590 7001_ $$aJansen, Eugène Hjm$$b2
000143590 7001_ $$aHolleczek, Bernd$$b3
000143590 7001_ $$0P:(DE-He78)6a8f87626cb610618a60d742677284cd$$aZhang, Yan$$b4$$udkfz
000143590 7001_ $$0P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aXuan, Yang$$b5$$udkfz
000143590 7001_ $$0P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aAnusruti, Ankita$$b6$$udkfz
000143590 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b7$$udkfz
000143590 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b8$$eLast author$$udkfz
000143590 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.32073$$gVol. 145, no. 1, p. 49 - 57$$n1$$p49 - 57$$tInternational journal of cancer$$v145$$x1097-0215$$y2019
000143590 909CO $$ooai:inrepo02.dkfz.de:143590$$pVDB
000143590 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000143590 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6a8f87626cb610618a60d742677284cd$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000143590 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000143590 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000143590 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000143590 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000143590 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000143590 9141_ $$y2019
000143590 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000143590 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143590 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143590 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143590 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2017
000143590 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143590 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000143590 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143590 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143590 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000143590 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000143590 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2017
000143590 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000143590 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000143590 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000143590 980__ $$ajournal
000143590 980__ $$aVDB
000143590 980__ $$aI:(DE-He78)C070-20160331
000143590 980__ $$aI:(DE-He78)C120-20160331
000143590 980__ $$aI:(DE-He78)L101-20160331
000143590 980__ $$aUNRESTRICTED