001     143590
005     20240229112558.0
024 7 _ |a 10.1002/ijc.32073
|2 doi
024 7 _ |a pmid:30561010
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
037 _ _ |a DKFZ-2019-01170
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Gao, Xin
|0 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
|b 0
|e First author
|u dkfz
245 _ _ |a Pre-diagnostic derivatives of reactive oxygen metabolites and the occurrence of lung, colorectal, breast and prostate cancer: An individual participant data meta-analysis of two large population-based studies.
260 _ _ |a Bognor Regis
|c 2019
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636106533_29692
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxidative stress may be involved in carcinogenesis and biomarkers of oxidative stress like derivatives of reactive oxygen metabolites (d-ROM) may be useful for cancer prediction. However, no previous study assessed the association of pre-diagnostic d-ROM measurements with cancer incidence. We measured serum d-ROM levels in a cohort sample of n = 4,345 participants of the German ESTHER study and in a case-cohort sample of the Norwegian Tromsø study (cancer cases: n = 941; subcohort: n = 1,000). Moreover, d-ROM was repeatedly measured at follow-ups of both studies. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were derived by (weighted) multivariable-adjusted Cox regression with time-dependent modeling of d-ROM levels for incident lung, colorectal, breast and prostate cancer. Individual study results were pooled by random effects meta-analysis. The HRs (95% CI) for comparison of top and bottom d-ROM tertile were statistically significant for lung (1.90 [1.25-2.89]), colorectal (1.70 [1.15-2.51]) and breast cancer incidence (1.45 [1.01-2.09]) but not for prostate cancer incidence (1.20 [0.84-1.72]). In conclusion, this individual participant data meta-analysis of two large population-based cohort studies with repeated d-ROM measurements yielded evidence for an involvement of high oxidative stress in carcinogenesis. Given the observed associations of pre-diagnostic d-ROM measurements with lung, colorectal and breast cancer incidence, subjects with increased serum d-ROM levels should be recommended to reduce these levels by lifestyle changes including smoking cessation, a healthy diet and an increase in physical activity.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Wilsgaard, Tom
|b 1
700 1 _ |a Jansen, Eugène Hjm
|b 2
700 1 _ |a Holleczek, Bernd
|b 3
700 1 _ |a Zhang, Yan
|0 P:(DE-He78)6a8f87626cb610618a60d742677284cd
|b 4
|u dkfz
700 1 _ |a Xuan, Yang
|0 P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87
|b 5
|u dkfz
700 1 _ |a Anusruti, Ankita
|0 P:(DE-He78)c78a3ddbabb2155657210120936e9801
|b 6
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 7
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 8
|e Last author
|u dkfz
773 _ _ |a 10.1002/ijc.32073
|g Vol. 145, no. 1, p. 49 - 57
|0 PERI:(DE-600)1474822-8
|n 1
|p 49 - 57
|t International journal of cancer
|v 145
|y 2019
|x 1097-0215
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143590
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)6a8f87626cb610618a60d742677284cd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c78a3ddbabb2155657210120936e9801
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J CANCER : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21