001     143591
005     20240229112558.0
024 7 _ |a 10.1002/hep.30493
|2 doi
024 7 _ |a pmid:30615206
|2 pmid
024 7 _ |a 0270-9139
|2 ISSN
024 7 _ |a 1527-3350
|2 ISSN
024 7 _ |a altmetric:53705592
|2 altmetric
037 _ _ |a DKFZ-2019-01171
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Goeppert, Benjamin
|b 0
245 _ _ |a Integrative Analysis Defines Distinct Prognostic Subgroups of Intrahepatic Cholangiocarcinoma.
260 _ _ |a New York [u.a.]
|c 2019
|b Wiley Interscience
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1681470318_13758
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer. It is defined by cholangiocytic differentiation and has poor prognosis. Recently, epigenetic processes have been shown to play an important role in cholangiocarcinogenesis. We performed an integrative analysis on 52 iCCAs using both genetic and epigenetic data with a specific focus on DNA methylation components. We found recurrent isocitrate dehydrogenase 1 (IDH1) and IDH2 (28%) gene mutations, recurrent arm-length copy number alterations (CNAs), and focal alterations such as deletion of 3p21 or amplification of 12q15, which affect BRCA1 Associated Protein 1, polybromo 1, and mouse double minute 2 homolog. DNA methylome analysis revealed excessive hypermethylation of iCCA, affecting primarily the bivalent genomic regions marked with both active and repressive histone modifications. Integrative clustering of genetic and epigenetic data identified four iCCA subgroups with prognostic relevance further designated as IDH, high (H), medium (M), and low (L) alteration groups. The IDH group consisted of all samples with IDH1 or IDH2 mutations and showed, together with the H group, a highly disrupted genome, characterized by frequent deletions of chromosome arms 3p and 6q. Both groups showed excessive hypermethylation with distinct patterns. The M group showed intermediate characteristics regarding both genetic and epigenetic marks, whereas the L group exhibited few methylation changes and mutations and a lack of CNAs. Methylation-based latent component analysis of cell-type composition identified differences among these four groups. Prognosis of the H and M groups was significantly worse than that of the L group. Conclusion: Using an integrative genomic and epigenomic analysis approach, we identified four major iCCA subgroups with widespread genomic and epigenomic differences and prognostic implications. Furthermore, our data suggest differences in the cell-of-origin of the iCCA subtypes.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Toth, Reka
|0 P:(DE-He78)cd2ec3f2ae9b2178f113e0f2ed15fc48
|b 1
|e First author
700 1 _ |a Singer, Stephan
|b 2
700 1 _ |a Albrecht, Thomas
|b 3
700 1 _ |a Lipka, Daniel B
|0 P:(DE-He78)c403a040c97f91902a7d31b93859f9fc
|b 4
700 1 _ |a Lutsik, Pavlo
|0 P:(DE-He78)ff1677c63392be9b31a1c8d23db7c9dc
|b 5
700 1 _ |a Brocks, David
|0 P:(DE-He78)3860e24c3868c15255c3383a58e8d5b8
|b 6
700 1 _ |a Baehr, Marion
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Muecke, Oliver
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Assenov, Yassen
|0 P:(DE-He78)45a6854ecf41ba2e65ca3ba0d560f14c
|b 9
700 1 _ |a Gu, Lei
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Endris, Volker
|b 11
700 1 _ |a Stenzinger, Albrecht
|b 12
700 1 _ |a Mehrabi, Arianeb
|b 13
700 1 _ |a Schirmacher, Peter
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Plass, Christoph
|0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
|b 15
700 1 _ |a Weichenhan, Dieter
|0 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
|b 16
|e Last author
700 1 _ |a Roessler, Stephanie
|b 17
773 _ _ |a 10.1002/hep.30493
|g Vol. 69, no. 5, p. 2091 - 2106
|0 PERI:(DE-600)1472120-x
|n 5
|p 2091 - 2106
|t Hepatology
|v 69
|y 2019
|x 1527-3350
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143591
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)cd2ec3f2ae9b2178f113e0f2ed15fc48
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)c403a040c97f91902a7d31b93859f9fc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)ff1677c63392be9b31a1c8d23db7c9dc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3860e24c3868c15255c3383a58e8d5b8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)45a6854ecf41ba2e65ca3ba0d560f14c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HEPATOLOGY : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b HEPATOLOGY : 2017
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 1
920 1 _ |0 I:(DE-He78)C010-20160331
|k C010
|l Epigenomik und Krebsrisikofaktoren
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)C010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21