000143600 001__ 143600
000143600 005__ 20240229112559.0
000143600 0247_ $$2doi$$a10.1002/ijc.32076
000143600 0247_ $$2pmid$$apmid:30560999
000143600 0247_ $$2ISSN$$a0020-7136
000143600 0247_ $$2ISSN$$a1097-0215
000143600 0247_ $$2altmetric$$aaltmetric:54664766
000143600 037__ $$aDKFZ-2019-01180
000143600 041__ $$aeng
000143600 082__ $$a610
000143600 1001_ $$aZaimenko, Inna$$b0
000143600 245__ $$aNon-invasive metastasis prognosis from plasma metabolites in stage II colorectal cancer patients: The DACHS study.
000143600 260__ $$aBognor Regis$$bWiley-Liss$$c2019
000143600 3367_ $$2DRIVER$$aarticle
000143600 3367_ $$2DataCite$$aOutput Types/Journal article
000143600 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1562075031_20116
000143600 3367_ $$2BibTeX$$aARTICLE
000143600 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143600 3367_ $$00$$2EndNote$$aJournal Article
000143600 520__ $$aMetastasis is the main cause of death from colorectal cancer (CRC). About 20% of stage II CRC patients develop metastasis during the course of disease. We performed metabolic profiling of plasma samples from non-metastasized and metachronously metastasized stage II CRC patients to assess the potential of plasma metabolites to serve as biomarkers for stratification of stage II CRC patients according to metastasis risk. We compared the metabolic profiles of plasma samples prospectively obtained prior to metastasis formation from non-metastasized vs. metachronously metastasized stage II CRC patients of the German population-based case-control multicenter DACHS study retrospectively. Plasma samples were analyzed from stage II CRC patients for whom follow-up data including the information on metachronous metastasis were available. To identify metabolites distinguishing non-metastasized from metachronously metastasized stage II CRC patients robust supervised classifications using decision trees and support vector machines were performed and verified by 10-fold cross-validation, by nested cross-validation and by traditional validation using training and test sets. We found that metabolic profiles distinguish non-metastasized from metachronously metastasized stage II CRC patients. Classification models from decision trees and support vector machines with 10-fold cross-validation gave average accuracy of 0.75 (sensitivity 0.79, specificity 0.7) and 0.82 (sensitivity 0.85, specificity 0.77), respectively, correctly predicting metachronous metastasis in stage II CRC patients. Taken together, plasma metabolic profiles distinguished non-metastasized and metachronously metastasized stage II CRC patients. The classification models consisting of few metabolites stratify non-invasively stage II CRC patients according to their risk for metachronous metastasis.
000143600 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000143600 588__ $$aDataset connected to CrossRef, PubMed,
000143600 7001_ $$aJaeger, Carsten$$b1
000143600 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b2$$udkfz
000143600 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b3$$udkfz
000143600 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b4$$udkfz
000143600 7001_ $$0P:(DE-HGF)0$$aGrötzinger, Carsten$$b5
000143600 7001_ $$aDetjen, Katharina$$b6
000143600 7001_ $$aBurock, Susen$$b7
000143600 7001_ $$0P:(DE-HGF)0$$aSchmitt, Clemens A$$b8
000143600 7001_ $$00000-0001-7006-282X$$aStein, Ulrike$$b9
000143600 7001_ $$aLisec, Jan$$b10
000143600 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.32076$$gVol. 145, no. 1, p. 221 - 231$$n1$$p221 - 231$$tInternational journal of cancer$$v145$$x1097-0215$$y2019
000143600 909CO $$ooai:inrepo02.dkfz.de:143600$$pVDB
000143600 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000143600 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000143600 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000143600 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000143600 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000143600 9101_ $$0I:(DE-588b)2036810-0$$60000-0001-7006-282X$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000143600 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000143600 9141_ $$y2019
000143600 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000143600 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143600 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143600 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143600 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2017
000143600 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143600 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000143600 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143600 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143600 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000143600 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000143600 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2017
000143600 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000143600 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x1
000143600 9201_ $$0I:(DE-He78)L201-20160331$$kL201$$lDKTK Berlin$$x2
000143600 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x3
000143600 980__ $$ajournal
000143600 980__ $$aVDB
000143600 980__ $$aI:(DE-He78)C070-20160331
000143600 980__ $$aI:(DE-He78)C020-20160331
000143600 980__ $$aI:(DE-He78)L201-20160331
000143600 980__ $$aI:(DE-He78)L101-20160331
000143600 980__ $$aUNRESTRICTED