000143807 001__ 143807
000143807 005__ 20240229112608.0
000143807 0247_ $$2doi$$a10.1016/j.psyneuen.2019.03.019
000143807 0247_ $$2pmid$$apmid:30954921
000143807 0247_ $$2ISSN$$a0306-4530
000143807 0247_ $$2ISSN$$a1873-3360
000143807 0247_ $$2altmetric$$aaltmetric:58069415
000143807 037__ $$aDKFZ-2019-01369
000143807 041__ $$aeng
000143807 082__ $$a610
000143807 1001_ $$aGrund, Thomas$$b0
000143807 245__ $$aChemogenetic activation of oxytocin neurons: Temporal dynamics, hormonal release, and behavioral consequences.
000143807 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000143807 3367_ $$2DRIVER$$aarticle
000143807 3367_ $$2DataCite$$aOutput Types/Journal article
000143807 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1559650387_6511
000143807 3367_ $$2BibTeX$$aARTICLE
000143807 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143807 3367_ $$00$$2EndNote$$aJournal Article
000143807 520__ $$aChemogenetics provides cell type-specific remote control of neuronal activity. Here, we describe the application of chemogenetics used to specifically activate oxytocin (OT) neurons as representatives of a unique class of neuroendocrine cells. We injected recombinant adeno-associated vectors, driving the stimulatory subunit hM3Dq of a modified human muscarinic receptor into the rat hypothalamus to achieve cell type-specific expression in OT neurons. As chemogenetic activation of OT neurons has not been reported, we provide systematic analysis of the temporal dynamics of OT neuronal responses in vivo by monitoring calcium fluctuations in OT neurons, and intracerebral as well as peripheral release of OT. We further provide evidence for the efficiency of chemogenetic manipulation at behavioral levels, demonstrating that evoked activation of OT neurons leads to social motivation and anxiolysis. Altogether, our results will be profitable for researchers working on the physiology of neuroendocrine systems, peptidergic modulation of behaviors and translational psychiatry.
000143807 536__ $$0G:(DE-HGF)POF3-319H$$a319H - Addenda (POF3-319H)$$cPOF3-319H$$fPOF III$$x0
000143807 588__ $$aDataset connected to CrossRef, PubMed,
000143807 7001_ $$0P:(DE-He78)d821e448212defd91ac1e67f9653a34d$$aTang, Yan$$b1$$udkfz
000143807 7001_ $$0P:(DE-He78)a1d6cc139b384a5a74e91e16881a0acd$$aBenusiglio, Diego$$b2$$udkfz
000143807 7001_ $$0P:(DE-He78)c85332431993c88d28132a54566150ef$$aAlthammer, Ferdinand$$b3$$udkfz
000143807 7001_ $$aProbst, Sophia$$b4
000143807 7001_ $$aOppenländer, Lena$$b5
000143807 7001_ $$aNeumann, Inga D$$b6
000143807 7001_ $$0P:(DE-He78)b2142a2557ce071790760d0126e259d3$$aGrinevich, Valery$$b7$$eLast author$$udkfz
000143807 773__ $$0PERI:(DE-600)1500706-6$$a10.1016/j.psyneuen.2019.03.019$$gVol. 106, p. 77 - 84$$p77 - 84$$tPsychoneuroendocrinology$$v106$$x0306-4530$$y2019
000143807 909CO $$ooai:inrepo02.dkfz.de:143807$$pVDB
000143807 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d821e448212defd91ac1e67f9653a34d$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000143807 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a1d6cc139b384a5a74e91e16881a0acd$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000143807 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c85332431993c88d28132a54566150ef$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000143807 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2142a2557ce071790760d0126e259d3$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000143807 9131_ $$0G:(DE-HGF)POF3-319H$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vAddenda$$x0
000143807 9141_ $$y2019
000143807 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000143807 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPSYCHONEUROENDOCRINO : 2017
000143807 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143807 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143807 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143807 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000143807 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000143807 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143807 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000143807 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143807 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143807 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000143807 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000143807 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000143807 9201_ $$0I:(DE-He78)V078-20160331$$kV078$$lAG Neuropeptide$$x0
000143807 980__ $$ajournal
000143807 980__ $$aVDB
000143807 980__ $$aI:(DE-He78)V078-20160331
000143807 980__ $$aUNRESTRICTED