000143810 001__ 143810
000143810 005__ 20240229123017.0
000143810 0247_ $$2doi$$a10.1002/ijc.32314
000143810 0247_ $$2pmid$$apmid:30951192
000143810 0247_ $$2ISSN$$a0020-7136
000143810 0247_ $$2ISSN$$a1097-0215
000143810 0247_ $$2altmetric$$aaltmetric:58655121
000143810 037__ $$aDKFZ-2019-01372
000143810 041__ $$aeng
000143810 082__ $$a610
000143810 1001_ $$00000-0002-7733-8750$$aSchmidt, Julie A$$b0
000143810 245__ $$aPatterns in metabolite profile are associated with risk of more aggressive prostate cancer: A prospective study of 3,057 matched case-control sets from EPIC.
000143810 260__ $$aBognor Regis$$bWiley-Liss$$c2020
000143810 3367_ $$2DRIVER$$aarticle
000143810 3367_ $$2DataCite$$aOutput Types/Journal article
000143810 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581940060_19153
000143810 3367_ $$2BibTeX$$aARTICLE
000143810 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143810 3367_ $$00$$2EndNote$$aJournal Article
000143810 500__ $$aInt J Cancer. 2020 Feb 1;146(3):720-730
000143810 520__ $$aMetabolomics may reveal novel insights into the etiology of prostate cancer, for which few risk factors are established. We investigated the association between patterns in baseline plasma metabolite profile and subsequent prostate cancer risk, using data from 3,057 matched case-control sets from the European Prospective Investigation into Cancer and Nutrition (EPIC). We measured 119 metabolite concentrations in plasma samples, collected on average 9.4 years before diagnosis, by mass spectrometry (AbsoluteIDQ p180 Kit, Biocrates Life Sciences AG). Metabolite patterns were identified using treelet transform, a statistical method for identification of groups of correlated metabolites. Associations of metabolite patterns with prostate cancer risk (OR1SD ) were estimated by conditional logistic regression. Supplementary analyses were conducted for metabolite patterns derived using principal component analysis and for individual metabolites. Men with metabolite profiles characterized by higher concentrations of either phosphatidylcholines or hydroxysphingomyelins (OR1SD = 0.77, 95% confidence interval 0.66-0.89), acylcarnitines C18:1 and C18:2, glutamate, ornithine and taurine (OR1SD = 0.72, 0.57-0.90), or lysophosphatidylcholines (OR1SD = 0.81, 0.69-0.95) had lower risk of advanced stage prostate cancer at diagnosis, with no evidence of heterogeneity by follow-up time. Similar associations were observed for the two former patterns with aggressive disease risk (the more aggressive subset of advanced stage), while the latter pattern was inversely related to risk of prostate cancer death (OR1SD = 0.77, 0.61-0.96). No associations were observed for prostate cancer overall or less aggressive tumor subtypes. In conclusion, metabolite patterns may be related to lower risk of more aggressive prostate tumors and prostate cancer death, and might be relevant to etiology of advanced stage prostate cancer.
000143810 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000143810 588__ $$aDataset connected to CrossRef, PubMed,
000143810 7001_ $$aFensom, Georgina K$$b1
000143810 7001_ $$00000-0002-6846-1204$$aRinaldi, Sabina$$b2
000143810 7001_ $$aScalbert, Augustin$$b3
000143810 7001_ $$aAppleby, Paul N$$b4
000143810 7001_ $$aAchaintre, David$$b5
000143810 7001_ $$aGicquiau, Audrey$$b6
000143810 7001_ $$aGunter, Marc J$$b7
000143810 7001_ $$aFerrari, Pietro$$b8
000143810 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b9$$udkfz
000143810 7001_ $$0P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aKühn, Tilman$$b10$$udkfz
000143810 7001_ $$0P:(DE-HGF)0$$aBoeing, Heiner$$b11
000143810 7001_ $$aTrichopoulou, Antonia$$b12
000143810 7001_ $$aKarakatsani, Anna$$b13
000143810 7001_ $$aPeppa, Eleni$$b14
000143810 7001_ $$aPalli, Domenico$$b15
000143810 7001_ $$00000-0001-5201-172X$$aSieri, Sabina$$b16
000143810 7001_ $$aTumino, Rosario$$b17
000143810 7001_ $$aBueno-de-Mesquita, Bas$$b18
000143810 7001_ $$aAgudo, Antonio$$b19
000143810 7001_ $$aSánchez, Maria-Jose$$b20
000143810 7001_ $$aChirlaque, María-Dolores$$b21
000143810 7001_ $$aArdanaz, Eva$$b22
000143810 7001_ $$aLarrañaga, Nerea$$b23
000143810 7001_ $$aPerez-Cornago, Aurora$$b24
000143810 7001_ $$aAssi, Nada$$b25
000143810 7001_ $$aRiboli, Elio$$b26
000143810 7001_ $$aTsilidis, Konstantinos K$$b27
000143810 7001_ $$aKey, Timothy J$$b28
000143810 7001_ $$aTravis, Ruth C$$b29
000143810 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.32314$$gp. ijc.32314$$n3$$p720-730$$tInternational journal of cancer$$v146$$x1097-0215$$y2020
000143810 909CO $$ooai:inrepo02.dkfz.de:143810$$pVDB
000143810 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000143810 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000143810 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000143810 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000143810 9141_ $$y2020
000143810 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000143810 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143810 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143810 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143810 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2017
000143810 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143810 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000143810 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143810 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143810 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000143810 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000143810 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2017
000143810 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000143810 980__ $$ajournal
000143810 980__ $$aVDB
000143810 980__ $$aI:(DE-He78)C020-20160331
000143810 980__ $$aUNRESTRICTED