001     143810
005     20240229123017.0
024 7 _ |a 10.1002/ijc.32314
|2 doi
024 7 _ |a pmid:30951192
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
024 7 _ |a altmetric:58655121
|2 altmetric
037 _ _ |a DKFZ-2019-01372
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Schmidt, Julie A
|0 0000-0002-7733-8750
|b 0
245 _ _ |a Patterns in metabolite profile are associated with risk of more aggressive prostate cancer: A prospective study of 3,057 matched case-control sets from EPIC.
260 _ _ |a Bognor Regis
|c 2020
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581940060_19153
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Int J Cancer. 2020 Feb 1;146(3):720-730
520 _ _ |a Metabolomics may reveal novel insights into the etiology of prostate cancer, for which few risk factors are established. We investigated the association between patterns in baseline plasma metabolite profile and subsequent prostate cancer risk, using data from 3,057 matched case-control sets from the European Prospective Investigation into Cancer and Nutrition (EPIC). We measured 119 metabolite concentrations in plasma samples, collected on average 9.4 years before diagnosis, by mass spectrometry (AbsoluteIDQ p180 Kit, Biocrates Life Sciences AG). Metabolite patterns were identified using treelet transform, a statistical method for identification of groups of correlated metabolites. Associations of metabolite patterns with prostate cancer risk (OR1SD ) were estimated by conditional logistic regression. Supplementary analyses were conducted for metabolite patterns derived using principal component analysis and for individual metabolites. Men with metabolite profiles characterized by higher concentrations of either phosphatidylcholines or hydroxysphingomyelins (OR1SD  = 0.77, 95% confidence interval 0.66-0.89), acylcarnitines C18:1 and C18:2, glutamate, ornithine and taurine (OR1SD  = 0.72, 0.57-0.90), or lysophosphatidylcholines (OR1SD  = 0.81, 0.69-0.95) had lower risk of advanced stage prostate cancer at diagnosis, with no evidence of heterogeneity by follow-up time. Similar associations were observed for the two former patterns with aggressive disease risk (the more aggressive subset of advanced stage), while the latter pattern was inversely related to risk of prostate cancer death (OR1SD  = 0.77, 0.61-0.96). No associations were observed for prostate cancer overall or less aggressive tumor subtypes. In conclusion, metabolite patterns may be related to lower risk of more aggressive prostate tumors and prostate cancer death, and might be relevant to etiology of advanced stage prostate cancer.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Fensom, Georgina K
|b 1
700 1 _ |a Rinaldi, Sabina
|0 0000-0002-6846-1204
|b 2
700 1 _ |a Scalbert, Augustin
|b 3
700 1 _ |a Appleby, Paul N
|b 4
700 1 _ |a Achaintre, David
|b 5
700 1 _ |a Gicquiau, Audrey
|b 6
700 1 _ |a Gunter, Marc J
|b 7
700 1 _ |a Ferrari, Pietro
|b 8
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 9
|u dkfz
700 1 _ |a Kühn, Tilman
|0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
|b 10
|u dkfz
700 1 _ |a Boeing, Heiner
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Trichopoulou, Antonia
|b 12
700 1 _ |a Karakatsani, Anna
|b 13
700 1 _ |a Peppa, Eleni
|b 14
700 1 _ |a Palli, Domenico
|b 15
700 1 _ |a Sieri, Sabina
|0 0000-0001-5201-172X
|b 16
700 1 _ |a Tumino, Rosario
|b 17
700 1 _ |a Bueno-de-Mesquita, Bas
|b 18
700 1 _ |a Agudo, Antonio
|b 19
700 1 _ |a Sánchez, Maria-Jose
|b 20
700 1 _ |a Chirlaque, María-Dolores
|b 21
700 1 _ |a Ardanaz, Eva
|b 22
700 1 _ |a Larrañaga, Nerea
|b 23
700 1 _ |a Perez-Cornago, Aurora
|b 24
700 1 _ |a Assi, Nada
|b 25
700 1 _ |a Riboli, Elio
|b 26
700 1 _ |a Tsilidis, Konstantinos K
|b 27
700 1 _ |a Key, Timothy J
|b 28
700 1 _ |a Travis, Ruth C
|b 29
773 _ _ |a 10.1002/ijc.32314
|g p. ijc.32314
|0 PERI:(DE-600)1474822-8
|n 3
|p 720-730
|t International journal of cancer
|v 146
|y 2020
|x 1097-0215
909 C O |o oai:inrepo02.dkfz.de:143810
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J CANCER : 2017
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21