001     143863
005     20240229112610.0
024 7 _ |a 10.1016/j.radonc.2019.04.034
|2 doi
024 7 _ |a pmid:31146072
|2 pmid
024 7 _ |a 0167-8140
|2 ISSN
024 7 _ |a 1879-0887
|2 ISSN
024 7 _ |a altmetric:61170031
|2 altmetric
037 _ _ |a DKFZ-2019-01425
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Seibold, Petra
|0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
|b 0
|e First author
245 _ _ |a REQUITE: A prospective multicentre cohort study of patients undergoing radiotherapy for breast, lung or prostate cancer.
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634560898_4000
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a REQUITE aimed to establish a resource for multi-national validation of models and biomarkers that predict risk of late toxicity following radiotherapy. The purpose of this article is to provide summary descriptive data.An international, prospective cohort study recruited cancer patients in 26 hospitals in eight countries between April 2014 and March 2017. Target recruitment was 5300 patients. Eligible patients had breast, prostate or lung cancer and planned potentially curable radiotherapy. Radiotherapy was prescribed according to local regimens, but centres used standardised data collection forms. Pre-treatment blood samples were collected. Patients were followed for a minimum of 12 (lung) or 24 (breast/prostate) months and summary descriptive statistics were generated.The study recruited 2069 breast (99% of target), 1808 prostate (86%) and 561 lung (51%) cancer patients. The centralised, accessible database includes: physician- (47,025 forms) and patient- (54,901) reported outcomes; 11,563 breast photos; 17,107 DICOMs and 12,684 DVHs. Imputed genotype data are available for 4223 patients with European ancestry (1948 breast, 1728 prostate, 547 lung). Radiation-induced lymphocyte apoptosis (RILA) assay data are available for 1319 patients. DNA (n = 4409) and PAXgene tubes (n = 3039) are stored in the centralised biobank. Example prevalences of 2-year (1-year for lung) grade ≥2 CTCAE toxicities are 13% atrophy (breast), 3% rectal bleeding (prostate) and 27% dyspnoea (lung).The comprehensive centralised database and linked biobank is a valuable resource for the radiotherapy community for validating predictive models and biomarkers.Up to half of cancer patients undergo radiation therapy and irradiation of surrounding healthy tissue is unavoidable. Damage to healthy tissue can affect short- and long-term quality-of-life. Not all patients are equally sensitive to radiation 'damage' but it is not possible at the moment to identify those who are. REQUITE was established with the aim of trying to understand more about how we could predict radiation sensitivity. The purpose of this paper is to provide an overview and summary of the data and material available. In the REQUITE study 4400 breast, prostate and lung cancer patients filled out questionnaires and donated blood. A large amount of data was collected in the same way. With all these data and samples a database and biobank were created that showed it is possible to collect this kind of information in a standardised way across countries. In the future, our database and linked biobank will be a resource for research and validation of clinical predictors and models of radiation sensitivity. REQUITE will also enable a better understanding of how many people suffer with radiotherapy toxicity.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Webb, Adam
|b 1
700 1 _ |a Aguado-Barrera, Miguel E
|b 2
700 1 _ |a Azria, David
|b 3
700 1 _ |a Bourgier, Celine
|b 4
700 1 _ |a Brengues, Muriel
|b 5
700 1 _ |a Briers, Erik
|b 6
700 1 _ |a Bultijnck, Renée
|b 7
700 1 _ |a Calvo-Crespo, Patricia
|b 8
700 1 _ |a Carballo, Ana
|b 9
700 1 _ |a Choudhury, Ananya
|b 10
700 1 _ |a Cicchetti, Alessandro
|b 11
700 1 _ |a Claßen, Johannes
|b 12
700 1 _ |a Delmastro, Elena
|b 13
700 1 _ |a Dunning, Alison M
|b 14
700 1 _ |a Elliott, Rebecca M
|b 15
700 1 _ |a Farcy-Jacquet, Marie-Pierre
|b 16
700 1 _ |a Gabriele, Pietro
|b 17
700 1 _ |a Garibaldi, Elisabetta
|b 18
700 1 _ |a Gómez-Caamaño, Antonio
|b 19
700 1 _ |a Gutiérrez-Enríquez, Sara
|b 20
700 1 _ |a Higginson, Daniel S
|b 21
700 1 _ |a Johnson, Kerstie
|b 22
700 1 _ |a Lobato-Busto, Ramón
|b 23
700 1 _ |a Mollà, Meritxell
|b 24
700 1 _ |a Müller, Anusha
|0 P:(DE-He78)55e70ca2adf894e09e6d90b39fe358e1
|b 25
700 1 _ |a Payne, Debbie
|b 26
700 1 _ |a Peleteiro, Paula
|b 27
700 1 _ |a Post, Giselle
|b 28
700 1 _ |a Rancati, Tiziana
|b 29
700 1 _ |a Rattay, Tim
|0 P:(DE-He78)f78fcbd6d9c233854e2bbd62c3c22221
|b 30
700 1 _ |a Reyes, Victoria
|b 31
700 1 _ |a Rosenstein, Barry S
|b 32
700 1 _ |a De Ruysscher, Dirk
|b 33
700 1 _ |a De Santis, Maria Carmen
|b 34
700 1 _ |a Schäfer, Jörg
|b 35
700 1 _ |a Schnabel, Thomas
|b 36
700 1 _ |a Sperk, Elena
|b 37
700 1 _ |a Symonds, R Paul
|b 38
700 1 _ |a Stobart, Hilary
|b 39
700 1 _ |a Taboada-Valladares, Begoña
|b 40
700 1 _ |a Talbot, Christopher J
|b 41
700 1 _ |a Valdagni, Riccardo
|b 42
700 1 _ |a Vega, Ana
|b 43
700 1 _ |a Veldeman, Liv
|b 44
700 1 _ |a Ward, Tim
|b 45
700 1 _ |a Weißenberger, Christian
|b 46
700 1 _ |a West, Catharine M L
|b 47
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 48
|e Last author
700 1 _ |a consortium, REQUITE
|b 49
|e Collaboration Author
773 _ _ |a 10.1016/j.radonc.2019.04.034
|g Vol. 138, p. 59 - 67
|0 PERI:(DE-600)1500707-8
|p 59 - 67
|t Radiotherapy and oncology
|v 138
|y 2019
|x 0167-8140
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143863
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 25
|6 P:(DE-He78)55e70ca2adf894e09e6d90b39fe358e1
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 30
|6 P:(DE-He78)f78fcbd6d9c233854e2bbd62c3c22221
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 48
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIOTHER ONCOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21